Rigidity for Quasi - Möbius
نویسنده
چکیده
If a group acts by uniformly quasi-Möbius homeomorphisms on a compact Ahlfors n-regular space of topological dimension n such that the induced action on the space of distinct triples is cocompact, then the action is quasi-symmetrically conjugate to an action on the standard n-sphere by Möbius transformations.
منابع مشابه
Lens Rigidity with Trapped Geodesics in Two Dimensions
We consider the scattering and lens rigidity of compact surfaces with boundary that have a trapped geodesic. In particular we show that the flat cylinder and the flat Möbius strip are determined by their lens data. We also see by example that the flat Möbius strip is not determined by it’s scattering data. We then consider the case of negatively curved cylinders with convex boundary and show th...
متن کاملGeometric Rigidity of Conformal Matrices
We provide a geometric rigidity estimate à la Friesecke-James-Müller for conformal matrices. Namely, we replace SO(n) by a arbitrary compact subset of conformal matrices, bounded away from 0 and invariant under SO(n), and rigid motions by Möbius transformations.
متن کاملFiniteness Obstructions and Euler Characteristics of Categories
We introduce notions of finiteness obstruction, Euler characteristic, L2-Euler characteristic, and Möbius inversion for wide classes of categories. The finiteness obstruction of a category Γ of type (FP) is a class in the projective class group K0(RΓ); the Euler characteristic and L2-Euler characteristic are respectively its RΓ-rank and L2-rank. We also extend the second author’s K-theoretic Mö...
متن کاملRigidity of Circle Polyhedra in the 2-sphere and of Hyperideal Polyhedra in Hyperbolic 3-space
We generalize Cauchy’s celebrated theorem on the global rigidity of convex polyhedra in Euclidean 3-space E to the context of circle polyhedra in the 2-sphere S. We prove that any two convex and proper non-unitary c-polyhedra with Möbiuscongruent faces that are consistently oriented are Möbius-congruent. Our result implies the global rigidity of convex inversive distance circle packings in the ...
متن کاملRigidity of Configurations of Balls and Points in the N-sphere
We answer two questions of Beardon and Minda which arose from their study of the conformal symmetries of circular regions in the complex plane. We show that a configuration of closed balls in the N -sphere is determined up to Möbius transformations by the signed inversive distances between pairs of its elements, except when the boundaries of the balls have a point in common, and that a configur...
متن کامل