Bagging Regularizes

نویسندگان

  • Tomaso Poggio
  • Ryan Rifkin
  • Sayan Mukherjee
  • Alex Rakhlin
چکیده

Intuitively, we expect that averaging — or bagging — different regressors with low correlation should smooth their behavior and be somewhat similar to regularization. In this note we make this intuition precise. Using an almost classical definition of stability, we prove that a certain form of averaging provides generalization bounds with a rate of convergence of the same order as Tikhonov regularization — similar to fashionable RKHSbased learning algorithms. This report describes research done within the Center for Biological & Computational Learning which is part of the McGovern Institute, the Department of Brain & Cognitive Sciences and the Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. This research was sponsored by grants from: Office of Naval Research (DARPA) under contract No. N00014-001-0907, National Science Foundation (ITR) under contract No. IIS-0085836, National Science Foundation (KDI) under contract No. DMS-9872936, and National Science Foundation under contract No. IIS-9800032 Additional support was provided by: Central Research Institute of Electric Power Industry, Eastman Kodak Company, DaimlerChrysler AG, Compaq, Honda R&D Co., Ltd., Komatsu Ltd., NEC Fund, Siemens Corporate Research, Inc., and The Whitaker Foundation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Effect of Underlying Fabric on the Bagging Behaviour of Denim Fabrics (RESEARCH NOTE)

Underlying fabrics can change the appearance, function and quality of the garment, and also add so much longevity of the garment. Nowadays, with the increasing use of various types of fabrics in the garment industry, their resistance to bagging is of great importance with the aim of determining the effectiveness of textiles under various forces. The current paper investigated the effect of unde...

متن کامل

Performance of Porous Pavement Containing Different Types of Pozzolans

Underlying fabrics can change the appearance, function and quality of the garment, and also add so much longevity of the garment. Nowadays, with the increasing use of various types of fabrics in the garment industry, their resistance to bagging is of great importance with the aim of determining the effectiveness of textiles under various forces. The current paper investigated the effect of unde...

متن کامل

Improving Adaptive Bagging Methods for Evolving Data Streams

We propose two new improvements for bagging methods on evolving data streams. Recently, two new variants of Bagging were proposed: ADWIN Bagging and Adaptive-Size Hoeffding Tree (ASHT) Bagging. ASHT Bagging uses trees of different sizes, and ADWIN Bagging uses ADWIN as a change detector to decide when to discard underperforming ensemble members. We improve ADWIN Bagging using Hoeffding Adaptive...

متن کامل

Lossless Online Bayesian Bagging

Bagging frequently improves the predictive performance of a model. An online version has recently been introduced, which attempts to gain the benefits of an online algorithm while approximating regular bagging. However, regular online bagging is an approximation to its batch counterpart and so is not lossless with respect to the bagging operation. By operating under the Bayesian paradigm, we in...

متن کامل

An Empirical Study of Bagging Predictors for Different Learning Algorithms

Bagging is a simple, yet effective design which combines multiple base learners to form an ensemble for prediction. Despite its popular usage in many real-world applications, existing research is mainly concerned with studying unstable learners as the key to ensure the performance gain of a bagging predictor, with many key factors remaining unclear. For example, it is not clear when a bagging p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002