Unique Arrangement of α- and β-Cells in Human Islets of Langerhans
نویسندگان
چکیده
OBJECTIVE It is generally admitted that the endocrine cell organization in human islets is different from that of rodent islets. However, a clear description of human islet architecture has not yet been reported. The aim of this work was to describe our observations on the arrangement of human islet cells. RESEARCH DESIGN AND METHODS Human pancreas specimens and isolated islets were processed for histology. Sections were analyzed by fluorescence microscopy after immunostaining for islet hormones and endothelial cells. RESULTS In small human islets (40-60 mum in diameter), beta-cells had a core position, alpha-cells had a mantle position, and vessels laid at their periphery. In bigger islets, alpha-cells had a similar mantle position but were found also along vessels that penetrate and branch inside the islets. As a consequence of this organization, the ratio of beta-cells to alpha-cells was constantly higher in the core than in the mantle part of the islets, and decreased with increasing islet diameter. This core-mantle segregation of islet cells was also observed in type 2 diabetic donors but not in cultured isolated islets. Three-dimensional analysis revealed that islet cells were in fact organized into trilaminar epithelial plates, folded with different degrees of complexity and bordered by vessels on both sides. In epithelial plates, most beta-cells were located in a central position but frequently showed cytoplasmic extensions between outlying non-beta-cells. CONCLUSIONS Human islets have a unique architecture allowing all endocrine cells to be adjacent to blood vessels and favoring heterologous contacts between beta- and alpha-cells, while permitting homologous contacts between beta-cells.
منابع مشابه
Gestational diabetes leads to down-regulation of CDK4-pRB-E2F1 pathway genes in pancreatic islets of rat offspring
Objective(s): The link between a hyperglycemic intrauterine environment and the development of diabetes later in life has been observed in offspring exposed to gestational diabetes mellitus (GDM), but the underlying mechanisms for this phenomenon are still not clear. Reduced β-cells mass is a determinant in the development of diabetes (type 1 and type 2 diabetes). Some recent studies have provi...
متن کاملMechanistic assessment of cadmium toxicity in association with the functions of estrogen receptors in the Langerhans islets
Objective(s): Diabetes is a metabolic disease with an increasing prevalence for which finding new and efficient therapeutic approaches has always been a challenge. Preserving integrity and functionality of pancreatic β-cells as the only source of insulin in the body is such a case. To achieve this goal different cellular targets have been proposed among which pancreatic estrogen receptors have ...
متن کاملThe effect of ghrelin on Kiss-1 and KissR gene transcription and insulin secretion in rat islets of Langerhans and CRI-D2 cell line
Objective(s): Ghrelin is a peptide hormone that has been shown to have numerous central and peripheral effects. The central effects including GH secretion, food intake, and energy homeostasis are partly mediated by Kiss1- KissR signaling pathway. Ghrelin and its receptor are also expressed in the pancreatic islets. Ghrelin is one of the key metabolic factors controlling insulin secretion from t...
متن کاملاثر متفورمین بر روی حجم جزایر لانگرهانس درپانکراس موش سوری
Background and Objective: Metformin is a widely used medicine for treatment of type 2 diabetes. In this study, the effect of various doses of metformin on the mouse islets of langerhans volume was investigated. Materials and methods: Twenty four C57BL/6 adult male mice weighting 30±5 gr were randomly divided into 4 groups. Normal saline was given to the control group (group 4) and the experimen...
متن کاملA Conserved Rule for Pancreatic Islet Organization
Morphogenesis, spontaneous formation of organism structure, is essential for life. In the pancreas, endocrine α, β, and δ cells are clustered to form islets of Langerhans, the critical micro-organ for glucose homeostasis. The spatial organization of endocrine cells in islets looks different between species. Based on the three-dimensional positions of individual cells in islets, we computational...
متن کامل