Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound.

نویسندگان

  • Elena A Kaye
  • Yoni Hertzberg
  • Michael Marx
  • Beat Werner
  • Gil Navon
  • Marc Levoy
  • Kim Butts Pauly
چکیده

PURPOSE To study the phase aberrations produced by human skulls during transcranial magnetic resonance imaging guided focused ultrasound surgery (MRgFUS), to demonstrate the potential of Zernike polynomials (ZPs) to accelerate the adaptive focusing process, and to investigate the benefits of using phase corrections obtained in previous studies to provide the initial guess for correction of a new data set. METHODS The five phase aberration data sets, analyzed here, were calculated based on preoperative computerized tomography (CT) images of the head obtained during previous transcranial MRgFUS treatments performed using a clinical prototype hemispherical transducer. The noniterative adaptive focusing algorithm [Larrat et al., "MR-guided adaptive focusing of ultrasound," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(8), 1734-1747 (2010)] was modified by replacing Hadamard encoding with Zernike encoding. The algorithm was tested in simulations to correct the patients' phase aberrations. MR acoustic radiation force imaging (MR-ARFI) was used to visualize the effect of the phase aberration correction on the focusing of a hemispherical transducer. In addition, two methods for constructing initial phase correction estimate based on previous patient's data were investigated. The benefits of the initial estimates in the Zernike-based algorithm were analyzed by measuring their effect on the ultrasound intensity at the focus and on the number of ZP modes necessary to achieve 90% of the intensity of the nonaberrated case. RESULTS Covariance of the pairs of the phase aberrations data sets showed high correlation between aberration data of several patients and suggested that subgroups can be based on level of correlation. Simulation of the Zernike-based algorithm demonstrated the overall greater correction effectiveness of the low modes of ZPs. The focal intensity achieves 90% of nonaberrated intensity using fewer than 170 modes of ZPs. The initial estimates based on using the average of the phase aberration data from the individual subgroups of subjects was shown to increase the intensity at the focal spot for the five subjects. CONCLUSIONS The application of ZPs to phase aberration correction was shown to be beneficial for adaptive focusing of transcranial ultrasound. The skull-based phase aberrations were found to be well approximated by the number of ZP modes representing only a fraction of the number of elements in the hemispherical transducer. Implementing the initial phase aberration estimate together with Zernike-based algorithm can be used to improve the robustness and can potentially greatly increase the viability of MR-ARFI-based focusing for a clinical transcranial MRgFUS therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MR-guided adaptive focusing of therapeutic ultrasound beams in the human head.

PURPOSE This study aims to demonstrate, using human cadavers the feasibility of energy-based adaptive focusing of ultrasonic waves using magnetic resonance acoustic radiation force imaging (MR-ARFI) in the framework of non-invasive transcranial high intensity focused ultrasound (HIFU) therapy. METHODS Energy-based adaptive focusing techniques were recently proposed in order to achieve aberrat...

متن کامل

Transcranial Focused Ultrasound Modulates Electrical Behavior of the Neurons: Design and Implementation of a Model

Background: Recently, ultrasonic neuromodulation research has been an important and interesting issue. Ultrasonic neuromodulation is possible by the use of low-intensity transcranial focused ultrasound (tFUS) to stimulate or inhibit the neural structures. The primary capability of this method is the improvement in the treatment progress of certain neurological and psychiatric disorders noninvas...

متن کامل

Non-invasive transcranial ultrasound therapy based on a 3D CT scan

A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull b...

متن کامل

Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results.

A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull b...

متن کامل

Design of HIFU transducers to generate specific nonlinear ultrasound fields

Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements on the pressure level and degree of nonlinear waveform distortion at the focus. Applications that utilize nonlinear waves with developed shocks are of growing interest, for example, for mechanical disintegration as well as for accelerated thermal ablation of tissue. In this work, an inverse pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 39 10  شماره 

صفحات  -

تاریخ انتشار 2012