Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects.

نویسندگان

  • M Ruegger
  • E Dewey
  • L Hobbie
  • D Brown
  • P Bernasconi
  • J Turner
  • G Muday
  • M Estelle
چکیده

Polar auxin transport plays a key role in the regulation of plant growth and development. To identify genes involved in this process, we have developed a genetic procedure to screen for mutants of Arabidopsis that are altered in their response to auxin transport inhibitors. We recovered a total of 16 independent mutants that defined seven genes, called TRANSPORT INHIBITOR RESPONSE (TIR) genes. Recessive mutations in one of these genes, TIR3, result in altered responses to transport inhibitors, a reduction in polar auxin transport, and a variety of morphological defects that can be ascribed to changes in indole-3-acetic acid distribution. Most dramatically, tir3 seedlings are strongly deficient in lateral root production, a process that is known to depend on polar auxin transport from the shoot into the root. In addition, tir3 plants display a reduction in apical dominance as well as decreased elongation of siliques, pedicels, roots, and the inflorescence. Biochemical studies indicate that tir3 plants have a reduced number of N-1-naphthylphthalamic (NPA) binding sites, suggesting that the TIR3 gene is required for expression, localization, or stabilization of the NPA binding protein (NBP). Alternatively, the TIR3 gene may encode the NBP. Because the tir3 mutants have a substantial defect in NPA binding, their phenotype provides genetic evidence for a role for the NBP in plant growth and development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced Naphthylphthalamic Acid Binding in the ti13 Mutant of Arabidopsis 1s Associated with a Reduction in Polar Auxin Transport and Diverse Morphological Defects

Polar auxin transport plays a key role in the regulation of plant growth and development. To identify genes involved in this process, we have developed a genetic procedure to screen for mutants of Arabidopsis that are altered in their response to auxin transport inhibitors. We recovered a total of 16 independent mutants that defined seven genes, called TRANSPORT lNHIBlTOR RESPONSE (TIR) genes. ...

متن کامل

Auxin and ETTIN in Arabidopsis gynoecium morphogenesis.

The phytohormone auxin has wide-ranging effects on growth and development. Genetic and physiological approaches implicate auxin flux in determination of floral organ number and patterning. This study uses a novel technique of transiently applying a polar auxin transport inhibitor, N-1-naphthylphthalamic acid (NPA), to developing Arabidopsis flowers to further characterize the role of auxin in o...

متن کامل

Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development.

Arabidopsis possesses several genes related to the multidrug resistance (MDR) genes of animals, one of which, AtMDR1, was shown to be induced by the hormone auxin. Plants having mutations in AtMDR1 or its closest relative, AtPGP1, were isolated by a reverse genetic strategy. Auxin transport activity was greatly impaired in atmdr1 and atmdr1 atpgp1 double mutant plants. Epinastic cotyledons and ...

متن کامل

ROOT ULTRAVIOLET B-SENSITIVE1/weak auxin response3 is essential for polar auxin transport in Arabidopsis.

The phytohormone auxin regulates virtually every aspect of plant development. To identify new genes involved in auxin activity, a genetic screen was performed for Arabidopsis (Arabidopsis thaliana) mutants with altered expression of the auxin-responsive reporter DR5rev:GFP. One of the mutants recovered in the screen, designated as weak auxin response3 (wxr3), exhibits much lower DR5rev:GFP expr...

متن کامل

Alteration of auxin polar transport in the Arabidopsis ifl1 mutants.

The INTERFASCICULAR FIBERLESS/REVOLUTA (IFL1/REV) gene is essential for the normal differentiation of interfascicular fibers and secondary xylem in the inflorescence stems of Arabidopsis. It has been proposed that IFL1/REV influences auxin polar flow or the transduction of auxin signal, which is required for fiber and vascular differentiation. Assay of auxin polar transport showed that the ifl1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 1997