Toeplitz Matrix Approximation
نویسنده
چکیده
This paper deals with numerical Toeplitz matrix approximation. Our approach is based on (i) a projection algorithm which converges globally but slowly; and (ii) the quasi-Newton method which is faster. Hybrid methods that attempt to combine the best features of both methods are then considered.
منابع مشابه
Shift-invert Arnoldi Approximation to the Toeplitz
The shift-invert Arnoldi method is employed to generate an orthonormal basis from the Krylov subspace corresponding to a real Toeplitz matrix and an initial vector. The vectors and recurrence coefficients produced by this method are exploited to approximate the Toeplitz matrix exponential. Toeplitz matrix inversion formula and rapid Toeplitz matrix-vector multiplications are utilized to lower t...
متن کاملSQP algorithms for solving Toeplitz matrix approximation problem
The problem we are interested in is the best approximation of a given matrix by a positive semi–definite symmetric Toeplitz matrix. Toeplitz matrices appear naturally in a variety of problems in engineering. Since positive semi–definite Toeplitz matrices can be viewed as shift invariant autocorrelation matrices, considerable attention has been paid to them, especially in the areas of stochastic...
متن کاملFast computation of the matrix exponential for a Toeplitz matrix
The computation of the matrix exponential is a ubiquitous operation in numerical mathematics, and for a general, unstructured n×n matrix it can be computed in O(n3) operations. An interesting problem arises if the input matrix is a Toeplitz matrix, for example as the result of discretizing integral equations with a time invariant kernel. In this case it is not obvious how to take advantage of t...
متن کاملThe Kähler Mean of Block-Toeplitz Matrices with Toeplitz Structured Blocks
When computing an average of positive definite (PD) matrices, the preservation of additional matrix structure is desirable for interpretations in applications. An interesting and widely present structure is that of PD Toeplitz matrices, which we endow with a geometry originating in signal processing theory. As an averaging operation, we consider the barycenter, or minimizer of the sum of square...
متن کاملComputing the Smallest Eigenvalue of a Symmetric Toeplitz Matrix
In this note we discuss a method of order 1 + √ 3 for computing the smallest eigenvalue λ1 of a symmetric and positive definite Toeplitz matrix. It generalizes and improves a method introduced in [7] which is based on rational Hermitean interpolation of the secular equation. Taking advantage of a further rational approximation of the secular equation which is essentially for free and which yiel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006