Amitriptyline activates cardiac ryanodine channels and causes spontaneous sarcoplasmic reticulum calcium release.

نویسندگان

  • Nagesh Chopra
  • Derek Laver
  • Sean S Davies
  • Björn C Knollmann
چکیده

Patients taking amitriptyline (AMT) have an increased risk of sudden cardiac death, yet the mechanism for AMT's proarrhythmic effects remains incompletely understood. Here, we hypothesize that AMT activates cardiac ryanodine channels (RyR2), causing premature Ca(2+) release from the sarcoplasmic reticulum (SR), a mechanism identified by genetic studies as a cause of ventricular arrhythmias and sudden cardiac death. To test this hypothesis, we measured the effect of AMT on RyR2 channels from mice and sheep and on intact mouse cardiomyocytes loaded with the Ca(2+) fluorescent indicator Fura-2 acetoxymethyl ester. AMT induced trains of long channel openings (bursts) with 60 to 90% of normal conductance in RyR2 channels incorporated in lipid bilayers. The [AMT], voltage, and open probability (P(o)) dependencies of burst frequency and duration indicated that AMT binds primarily to open RyR2 channels. AMT also activated RyR2 channels isolated from transgenic mice lacking cardiac calsequestrin. Reducing RyR2 P(o) by increasing cytoplasmic [Mg(2+)] significantly inhibited the AMT effect on RyR2 channels. Consistent with the single RyR2 channel data, AMT increased the rate of spontaneous Ca(2+) releases and decreased the SR Ca(2+) content in intact cardiomyocytes. Intracellular [AMT] were approximately 5-fold higher than extracellular [AMT], explaining AMT's higher potency in cardiomyocytes at clinically relevant concentrations (0.5-3 muM) compared with its effect in lipid bilayers (5-10 muM). Increasing extracellular [Mg(2+)] attenuated the effect of AMT in intact myocytes. We conclude that the heretofore unrecognized activation of RyR2 channels and increased SR Ca(2+) leak may contribute to AMT's proarrhythmic and cardiotoxic effects, which may be counteracted by interventions that reduce RyR2 channel open probability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tricyclic antidepressant amitriptyline alters sarcoplasmic reticulum calcium handling in ventricular myocytes.

Tricyclic antidepressants such as amitriptyline (AMT) have been reported to have adverse side effects on cardiac performance. AMT effects on Ca handling in ventricular myocytes, however, are not well understood. Therefore, we investigated AMT action on sarcoplasmic reticulum (SR) Ca release in ventricular myocytes, ryanodine receptor (RyR) activity, and Ca uptake by SR microsomes. In permeabili...

متن کامل

Sarcoplasmic reticulum calcium leak and cardiac arrhythmias.

Ventricular arrhythmias deteriorating into sudden cardiac death are a major cause of mortality worldwide. The recent linkage of a genetic form of cardiac arrhythmia to mutations in the gene encoding RyR2 (ryanodine receptor 2) has uncovered an important role of this SR (sarcoplasmic reticulum) calcium release channel in triggering arrhythmias. Mutant RyR2 channels give rise to spontaneous relea...

متن کامل

RyR2 Modulates a Ca2+-Activated K+ Current in Mouse Cardiac Myocytes

In cardiomyocytes, Ca2+ entry through voltage-dependent Ca2+ channels (VDCCs) binds to and activates RyR2 channels, resulting in subsequent Ca2+ release from the sarcoplasmic reticulum (SR) and cardiac contraction. Previous research has documented the molecular coupling of small-conductance Ca2+-activated K+ channels (SK channels) to VDCCs in mouse cardiac muscle. Little is known regarding the ...

متن کامل

A mathematical model of spontaneous calcium release in cardiac myocytes.

In cardiac myocytes, calcium (Ca) can be released from the sarcoplasmic reticulum independently of Ca influx from voltage-dependent membrane channels. This efflux of Ca, referred to as spontaneous Ca release (SCR), is due to Ryanodine receptor fluctuations, which can induce spontaneous Ca sparks, which propagate to form Ca waves. This release of Ca can then induce delayed after-depolarizations ...

متن کامل

MicroRNA: a toolkit fine-tuning the dyadic "fuzzy space"?

Cardiac excitation-contraction (E-C) coupling links action potentials to muscle contraction and is in essence a process of calcium ion mobilization.1 The central mechanism governing this process in ventricular myocytes is Ca induced Ca release, or CICR. It has been established for more than 20 years that CICR operates in a local control mode, taking place in a restricted junctional space of 12 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 75 1  شماره 

صفحات  -

تاریخ انتشار 2009