Integrated Water Vapor Measurements from Atmospheric Infrared Sounder ( Airs ) and Surface - Based Global Positioning System Receivers
نویسندگان
چکیده
Integrated Precipitable Water (IPW) vapor estimates derived from a network of ground-based GPS receivers provide an accurate, convenient, and statistically robust means to assess the quality of AIRS water vapor retrievals over the contiguous United States (CONUS). For a period from April to October 2004, GPS IPW estimates were paired with AIRS data nearly coincident in time and space. The matched data pairs exhibit small monthly mean and rms differences, giving confidence in both the AIRS observations and the humidity retrieval. Monthly rms differences were reduced using stricter horizontal matching, indicating that part of the observed differences are attributable to sampling. IPW biases were found to be proportional to surface pressure differences reported for the GPS and AIRS retrievals. IPW match-up pairs for which the surface pressure differences are small (less than 0.5 mb) show smaller biases. Moreover, adjusting the AIRS IPW values to account for the reported surface pressure differences resulted in significant reductions of both bias and rms differences. The AIRS IPW estimates tend to be relatively dry in moist atmospheres (IPW values > 40 mm) and wet in dry cases (IPW values < 10 mm). This is consistent with previously documented tendency of satellite retrievals to be biased towards initial guess used for the retrievals. Additional investigation is necessary to verify and quantify the effect of the bias of AIRS water vapor retrievals towards initial guess on AIRS IPW estimates and their validation. Finally, it is shown that the IPW bias and rms differences appear to have a seasonal dependency.
منابع مشابه
Analysis of temporal and spatial correlation between precipitable water vapor retrievals from AIRS satellite sensor and 29 synoptic station measurements in Iran
Precipitable Water Vapor (PWV) is one of the most important quantities in meteorology and climate studies. PWV in Earth's atmosphere can be measured by Sun-photometer, the Atmospheric Infrared Sounder (AIRS), and radiosonde from surface, atmosphere and space-based systems, respectively. In this paper, we use PWV measured by Sun-photometer located in Institute for Advanced Studies in Basic Scien...
متن کاملOn the accuracy of integrated water vapor observations and the potential for mitigating electromagnetic path delay error in InSAR
A field campaign was carried out in the framework of the Mitigation of Electromagnetic Transmission errors induced by Atmospheric Water Vapour Effects (METAWAVE) project sponsored by the European Space Agency (ESA) to investigate the accuracy of currently available sources of atmospheric columnar integrated water vapor measurements. The METAWAVE campaign took place in Rome, Italy, for the 2-wee...
متن کاملGPS Meteorology' Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System
We present a new approach to remote sensing of water vapor based on the global positioning system (GPS). Geodesists and geophysicists have devised methods for estimating the extent to which signals propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water vapor. This delay is parameterized in terms of a time-varying zenith wet delay (ZWD) which is retrieved ...
متن کاملEvaluation of the GOES-R ABI LAP Retrieval Algorithm Using the GOES-13 Sounder
A physical retrieval algorithm has been developed for deriving the legacy atmospheric profile (LAP) product from infrared radiances of the Advanced Baseline Imager (ABI) on board the next-generation Geostationary Operational Environmental Satellite (GOES-R) series. In this study, the GOES-R ABI LAP retrieval algorithm is applied to the GOES-13 sounder radiance measurements (termed the GOES-13 L...
متن کاملRadiometric validation of the Atmospheric Infrared Sounder over the Antarctic Plateau
[1] Validation of infrared satellite instruments, after they have been launched into orbit, has traditionally relied on views of the relatively warm sea surface. The Antarctic Plateau provides a complementary validation target from space because it is also homogeneous over large areas, yet it is relatively cold. During summer, cloud-free conditions occur often and the atmospheric humidity is ve...
متن کامل