Applications of Latent Growth Mixture Modeling and allied methods to posttraumatic stress response data
نویسنده
چکیده
BACKGROUND Scientific research into mental health outcomes following trauma is undergoing a revolution as scientists refocus their efforts to identify underlying dimensions of health and psychopathology. This effort is in stark contrast to the previous focus which was to characterize individuals based on Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnostic status (Insel et al., 2010). A significant unresolved issue underlying this shift is how to characterize clinically relevant populations without reliance on the categorical definitions provided by the DSM. Classifying individuals based on their pattern of stress adaptation over time holds significant promise for capturing inherent inter-individual heterogeneity as responses including chronicity, recovery, delayed onset, and resilience can only be determined longitudinally (Galatzer-Levy & Bryant, 2013) and then characterizing these patterns for future research (Depaoli, Van de Schoot, Van Loey, & Sijbrandij, 2015). Such an approach allows for the identification of phenominologically similar patterns of response to diverse extreme environmental stressors (Bonanno, Kennedy, Galatzer-Levy, Lude, & Elfstom, 2012; Galatzer-Levy & Bonanno, 2012; Galatzer-Levy, Brown, et al., 2013; Galatzer-Levy, Burton, & Bonanno, 2012) including translational animal models of stress adaptation (Galatzer-Levy, Bonanno, Bush, & LeDoux, 2013; Galatzer-Levy, Moscarello, et al., 2014). The empirical identification of heterogeneous stress response patterns can increase the identification of mechanisms (Galatzer-Levy, Steenkamp, et al., 2014), consequences (Galatzer-Levy & Bonanno, 2014), treatment effects (Galatzer-Levy, Ankri, et al., 2013), and prediction (Galatzer-Levy, Karstoft, Statnikov, & Shalev, 2014) of individual differences in response to trauma. METHOD METHODological and theoretical considerations for the application of Latent Growth Mixture Modeling (LGMM) and allied methods such as Latent Class Growth Analysis (LCGA) for the identification of heterogeneous populations defined by their pattern of change over time will be presented (Van De Schoot, 2015). Common pitfalls including non-identification, over identification, and issues related to model specification will be discussed as well as the benefits of applying such methods along with the theoretical grounding of such approaches. CONCLUSIONS LGMM and allied methods have significant potential for improving the science of stress pathology as well as our understanding of healthy adaptation (resilience).
منابع مشابه
The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملInvestigating the Relationship Between Posttraumatic Growth Dimensions and Posttraumatic Stress Symptoms in Blood, Colorectal and Breast Cancer Patients
Background & purpose: experience of life-threatening illnesses such as cancer leads to the comprehension of its positive outcomes along with its negative consequences. The purpose of this study was to examine the curve linear and linear relationship between post-traumatic growth dimensions and post-traumatic stress symptoms in cancer patients. Materials & Methods: The present study was a descri...
متن کاملAssessing dimensions of posttraumatic growth of cancer in survived patients
Introduction: Posttraumatic growth is defined as subjective positive psychological changes following the struggle with highly challenging life events. Objective: The aim of current study was to determine dimensions of posttraumatic growth in patients with cancer. Methods: This is cross-sectional descriptive study. Study population included all cancer patients of two main referral hospitals in T...
متن کاملمدل معادلات ساختاری و کاربرد آن در مطالعات روانشناسی: یک مطالعه مروری
Introduction: Structural Equation Modeling (SEM) is a very general statistical modeling technique, which is widely used in the behavioral sciences. It can be viewed as a combination of path analysis, regression and factor analysis. One of the prominent features of this method is the ability to compute direct, indirect and total effects, as well as latent variable modeling. Methods: This sy...
متن کاملIntegrating Person-Centered and Variable-Centered Analyses: Growth Mixture Modeling With Latent
Background: Many alcohol research questions require methods that take a person-centered approach because the interest is in finding heterogeneous groups of individuals, such as those who are susceptible to alcohol dependence and those who are not. A person-centered focus also is useful with longitudinal data to represent heterogeneity in developmental trajectories. In alcohol, drug, and mental ...
متن کامل