Membrane Lipid Co-Aggregation with α-Synuclein Fibrils
نویسندگان
چکیده
Amyloid deposits from several human diseases have been found to contain membrane lipids. Co-aggregation of lipids and amyloid proteins in amyloid aggregates, and the related extraction of lipids from cellular membranes, can influence structure and function in both the membrane and the formed amyloid deposit. Co-aggregation can therefore have important implications for the pathological consequences of amyloid formation. Still, very little is known about the mechanism behind co-aggregation and molecular structure in the formed aggregates. To address this, we study in vitro co-aggregation by incubating phospholipid model membranes with the Parkinson's disease-associated protein, α-synuclein, in monomeric form. After aggregation, we find spontaneous uptake of phospholipids from anionic model membranes into the amyloid fibrils. Phospholipid quantification, polarization transfer solid-state NMR and cryo-TEM together reveal co-aggregation of phospholipids and α-synuclein in a saturable manner with a strong dependence on lipid composition. At low lipid to protein ratios, there is a close association of phospholipids to the fibril structure, which is apparent from reduced phospholipid mobility and morphological changes in fibril bundling. At higher lipid to protein ratios, additional vesicles adsorb along the fibrils. While interactions between lipids and amyloid-protein are generally discussed within the perspective of different protein species adsorbing to and perturbing the lipid membrane, the current work reveals amyloid formation in the presence of lipids as a co-aggregation process. The interaction leads to the formation of lipid-protein co-aggregates with distinct structure, dynamics and morphology compared to assemblies formed by either lipid or protein alone.
منابع مشابه
The influence of N-terminal acetylation on micelle-induced conformational changes and aggregation of α-Synuclein
The biological function of α-Synuclein has been related to binding to lipids and membranes but these interactions can also mediate α-Synuclein aggregation, which is associated to Parkinson's disease and other neuropathologies. In brain tissue α-Synuclein is constitutively N-acetylated, a modification that plays an important role in its conformational propensity, lipid and membrane binding, and ...
متن کاملβ-Synuclein suppresses both the initiation and amplification steps of α-synuclein aggregation via competitive binding to surfaces
α-Synuclein is an intrinsically disordered protein that is associated with the pathogenesis of Parkinson's disease through the processes involved in the formation of amyloid fibrils. α and β-synuclein are homologous proteins found at comparable levels in presynaptic terminals but β-synuclein has a greatly reduced propensity to aggregate and indeed has been found to inhibit α-synuclein aggregati...
متن کاملThe Role of Lipids Interacting with α-Synuclein in the Pathogenesis of Parkinson's Disease.
α-synuclein is a small protein abundantly expressed in the brain and mainly located in synaptic terminals. The conversion of α-synuclein into oligomers and fibrils is the hallmark of a range of neurodegenerative disorders including Parkinson's disease and dementia with Lewy bodies. α-synuclein is disordered in solution but can adopt an α-helical conformation upon binding to lipid membranes. Thi...
متن کاملPiceatannol and Other Wine Stilbenes: A Pool of Inhibitors against α-Synuclein Aggregation and Cytotoxicity
The aggregation of α-synuclein is one on the key pathogenic events in Parkinson's disease. In the present study, we investigated the inhibitory capacities of stilbenes against α-synuclein aggregation and toxicity. Thioflavin T fluorescence, transmission electronic microscopy, and SDS-PAGE analysis were performed to investigate the inhibitory effects of three stilbenes against α-synuclein aggreg...
متن کاملDirect Visualization of Model Membrane Remodeling by α‐Synuclein Fibrillization
The interaction of α-synuclein (αS) with membranes is thought to be critical in the etiology of Parkinson's disease. Besides oligomeric αS aggregates that possibly form membrane pores, the aggregation of αS into amyloid fibrils has been reported to disrupt membranes. The mechanism by which aggregation affects the integrity of membranes is, however, unknown. Here, we show that whereas mature αS ...
متن کامل