Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase

نویسندگان

  • Alain Verreault
  • Paul D. Kaufman
  • Ryuji Kobayashi
  • Bruce Stillman
چکیده

BACKGROUND In eukaryotic cells, newly synthesized histone H4 is acetylated at lysines 5 and 12, a transient modification erased by deacetylases shortly after deposition of histones into chromosomes. Genetic studies in Saccharomyces cerevisiae revealed that acetylation of newly synthesized histones H3 and H4 is likely to be important for maintaining cell viability; the precise biochemical function of this acetylation is not known, however. The identification of enzymes mediating site-specific acetylation of H4 at Lys5 and Lys12 may help explain the function of the acetylation of newly synthesized histones. RESULTS A cDNA encoding the catalytic subunit of the human Hat1 acetyltransferase was cloned and, using specific antibodies, the Hat1 holoenzyme was purified from human 293 cells. The human enzyme acetylates soluble but not nucleosomal H4 at Lys5 and Lys12 and acetylates histone H2A at Lys5. Unexpectedly, we found Hat1 in the nucleus of S-phase cells. Like its yeast counterpart, the human holoenzyme consists of two subunits: a catalytic subunit, Hat1, and a subunit that binds core histones, p46, which greatly stimulates the acetyltransferase activity of Hat1. Both p46 and the highly related p48 polypeptide (the small subunit of human chromatin assembly factor 1; CAF-1) bind directly to helix 1 of histone H4, a region that is not accessible when H4 is in chromatin. CONCLUSIONS We suggest that p46 and p48 are core-histone-binding subunits that target chromatin assembly factors, chromatin remodeling factors, histone acetyltransferases and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A.

The human p300/CBP-associating factor, PCAF, mediates transcriptional activation through its ability to acetylate nucleosomal histone substrates as well as transcriptional activators such as p53. We have determined the 2.3 A crystal structure of the histone acetyltransferase (HAT) domain of PCAF bound to coenzyme A. The structure reveals a central protein core associated with coenzyme A binding...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

Nucleosome-free Region Dominates Histone Acetylation in Targeting SWR1 to Promoters for H2A.Z Replacement

The histone variant H2A.Z is a genome-wide signature of nucleosomes proximal to eukaryotic regulatory DNA. Whereas the multisubunit chromatin remodeler SWR1 is known to catalyze ATP-dependent deposition of H2A.Z, the mechanism of SWR1 recruitment to S. cerevisiae promoters has been unclear. A sensitive assay for competitive binding of dinucleosome substrates revealed that SWR1 preferentially bi...

متن کامل

Histone acetyltransferase 1 promotes homologous recombination in DNA repair by facilitating histone turnover.

Faithful repair of DNA double-strand breaks is vital to the maintenance of genome integrity and proper cell functions. Histone modifications, such as reversible acetylation, phosphorylation, methylation, and ubiquitination, which collectively contribute to the establishment of distinct chromatin states, play important roles in the recruitment of repair factors to the sites of double-strand brea...

متن کامل

Identification of multiple roles for histone acetyltransferase 1 in replication-coupled chromatin assembly

Histone acetyltransferase 1 (Hat1) catalyzes the acetylation of newly synthesized histone H4 at lysines 5 and 12 that accompanies replication-coupled chromatin assembly. The acetylation of newly synthesized H4 occurs in the cytoplasm and the function of this acetylation is typically ascribed to roles in either histone nuclear import or deposition. Using cell lines from Hat1+/+ and Hat1-/- mouse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998