Study of the Principal Component Analysis Method for the Correction of Images Degraded by Turbulence
نویسندگان
چکیده
This article analyzes and discusses a well-known paper [D. Li, R.M. Mersereau and S. Simske, IEEE Letters on Geoscience and Remote Sensing, 3:4 (2007), pp. 340–344] that applies principal component analysis in order to restore image sequences degraded by atmospheric turbulence. We propose a variant of this method and its ANSI C implementation. The proposed variant applies to image sequences acquired with short as well as long exposure times. Examples of restored images using sequences of real atmospheric turbulence are presented. Real atmospheric turbulent image dataset acquisition is described and made available for download.
منابع مشابه
Feature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملA principal component analysis based method for the Simulation of turbulence-degraded infrared image sequence
We present an original method for the simulation of images degraded by atmospheric turbulence. The existing methods allow us to simulate only images that are temporally decorrelated from each other, in the isoplanatic case, or in weak anisoplanatism. Here, we propose a simulation for the case of strong anisoplanatism. Moreover, the temporal aspect has been studied in order to build up a sequenc...
متن کاملExploring Gördes Zeolite Sites by Feature Oriented Principle Component Analysis of LANDSAT Images
Recent studies showed that remote sensing (RS) is an effective, efficient and reliable technique used in almost all the areas of earth sciences. Remote sensing as being a technique started with aerial photographs and then developed employing the multi-spectral satellite images. Nowadays, it benefits from hyper-spectral, RADAR and LIDAR data as well. This potential has widen its applicability in...
متن کاملFaults and fractures detection in 2D seismic data based on principal component analysis
Various approached have been introduced to extract as much as information form seismic image for any specific reservoir or geological study. Modeling of faults and fractures are among the most attracted objects for interpretation in geological study on seismic images that several strategies have been presented for this specific purpose. In this study, we have presented a modified approach of ap...
متن کاملDiscrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques
ABSTRACT- Firmness is one of the most important quality indicators for apple fruits, which is highly correlated with the storage time. The acoustic impulse response technique is one of the most commonly used nondestructive detection methods for evaluating apple firmness. This paper presents a non-destructive method for classification of Iranian apple (Malus domestica Borkh. cv. Golab) according...
متن کامل