$C_{E}PT$ Symmetry of the Simple Ecological Dynamical Equations

نویسندگان

  • Vladan Pankovic
  • Rade Glavatovic
  • Milan Predojevic
چکیده

It is shown that all simple ecological, i.e. population dynamical equations (unlimited exponential population growth (or decrease) dynamics, logistic or Verhulst equation, usual and generalized Lotka-Volterra equations) hold a symmetry, called CEPT symmetry. Namely, all simple ecological dynamical equations are invariant (symmetric) in respect to successive application of the time reversal transformation T , space coordinates reversal or parity transformation P , and predator-prey reversal transformation CE that changes preys in the predators or pure (healthy) in the impure (fatal) environment, and vice versa. It is deeply conceptually analogous to remarkable CPT symmetry of the fundamental physical dynamical equations. Further, it is shown that by more accurate, ”microscopic” analysis, given CEPT symmetry becomes explicitly broken.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the $c_{0}$-solvability of a class of infinite systems of functional-integral equations

  In this paper, an existence result for a class of infinite systems of functional-integral equations in the Banach sequence space $c_{0}$ is established via the well-known Schauder fixed-point theorem together with a criterion of compactness in the space $c_{0}$. Furthermore, we include some remarks to show the vastity of the class of infinite systems which can be covered by our result. The a...

متن کامل

Investigation on the Hermitian matrix expression‎ ‎subject to some consistent equations

In this paper‎, ‎we study the extremal‎ ‎ranks and inertias of the Hermitian matrix expression $$‎ ‎f(X,Y)=C_{4}-B_{4}Y-(B_{4}Y)^{*}-A_{4}XA_{4}^{*},$$ where $C_{4}$ is‎ ‎Hermitian‎, ‎$*$ denotes the conjugate transpose‎, ‎$X$ and $Y$ satisfy‎ ‎the following consistent system of matrix equations $A_{3}Y=C_{3}‎, ‎A_{1}X=C_{1},XB_{1}=D_{1},A_{2}XA_{2}^{*}=C_{2},X=X^{*}.$ As‎ ‎consequences‎, ‎we g...

متن کامل

Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities.

We investigate the dynamical behavior of continuous and discrete Schrödinger systems exhibiting parity-time (PT) invariant nonlinearities. We show that such equations behave in a fundamentally different fashion than their nonlinear Schrödinger counterparts. In particular, the PT-symmetric nonlinear Schrödinger equation can simultaneously support both bright and dark soliton solutions. In additi...

متن کامل

On Character Space of the Algebra of BSE-functions

Suppose that $A$ is a semi-simple and commutative Banach algebra. In this paper we try to characterize the character space of the Banach algebra $C_{rm{BSE}}(Delta(A))$ consisting of all  BSE-functions on $Delta(A)$ where $Delta(A)$ denotes the character space of $A$. Indeed, in the case that $A=C_0(X)$ where $X$ is a non-empty locally compact Hausdroff space, we give a complete characterizatio...

متن کامل

Ranks of the common solution to some quaternion matrix equations with applications

We derive the formulas of the maximal andminimal ranks of four real matrices $X_{1},X_{2},X_{3}$ and $X_{4}$in common solution $X=X_{1}+X_{2}i+X_{3}j+X_{4}k$ to quaternionmatrix equations $A_{1}X=C_{1},XB_{2}=C_{2},A_{3}XB_{3}=C_{3}$. Asapplications, we establish necessary and sufficient conditions forthe existence of the common real and complex solutions to the matrixequations. We give the exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005