High Performance Palladium Supported on Nanoporous Carbon under Anhydrous Condition
نویسندگان
چکیده
Due to the high cost of polymer electrolyte fuel cells (PEFCs), replacing platinum (Pt) with some inexpensive metal was carried out. Here, we deposited palladium nanoparticles (Pd-NPs) on nanoporous carbon (NC) after wrapping by poly[2,2'-(2,6-pyridine)-5,5'-bibenzimidazole] (PyPBI) doped with phosphoric acid (PA) and the Pd-NPs size was successfully controlled by varying the weight ratio between Pd precursor and carbon support doped with PA. The membrane electrode assembly (MEA) fabricated from the optimized electrocatalyst with 0.05 mgPd cm-2 for both anode and cathode sides showed a power density of 76 mW cm-2 under 120 °C without any humidification, which was comparable to the commercial CB/Pt, 89 mW cm-2 with 0.45 mgPt cm-2 loaded in both anode and cathode. Meanwhile, the power density of hybrid MEA with 0.45 mgPt cm-2 in cathode and 0.05 mgPd cm-2 in anode reached 188 mW cm-2. The high performance of the Pt-free electrocatalyst was attributed to the porous structure enhancing the gas diffusion and the PyPBI-PA facilitating the proton conductivity in catalyst layer. Meanwhile, the durability of Pd electrocatalyst was enhanced by coating with acidic polymer. The newly fabricated Pt-free electrocatalyst is extremely promising for reducing the cost in the high-temperature PEFCs.
منابع مشابه
Multi-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electro oxidation in alkaline media
Palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNTs) have been synthesized using a modified polyol reduction method and its performance in methanol oxidation reactions has evaluated. The morphology of palladium on MWCNTs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic performance of synthesized catalyst ...
متن کاملPerformance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملPalladium nanoparticles supported on carbon black powder as an effective anodic catalyst for application in a direct glucose alkaline fuel cell
Palladium nanoparticles supported on carbon black powder (Vulcan XC-72) nanocomposite (Pd/C) are synthesized as the catalyst for the anodic oxidation of glucose for use in a direct glucose alkaline fuel cell (DGAFC). Characterization of the catalyst is carried out using physical and electrochemical methods. It is observed that Palladium nanoparticles are uniformly dispersed onto the carbon blac...
متن کاملPalladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation.
PdCo nanotube arrays (NTAs) supported on carbon fiber cloth (CFC) (PdCo NTAs/CFC) are presented as high-performance flexible electrocatalysts for ethanol oxidation. The fabricated flexible PdCo NTAs/CFC exhibits significantly improved electrocatalytic activity and durability compared with Pd NTAs/CFC and commercial Pd/C catalysts. Most importantly, the PdCo NTAs/CFC shows excellent flexibility ...
متن کاملWell-defined nanoporous palladium for electrochemical reductive dechlorination.
Well-defined nanoporous palladium (np-Pd) fabricated by a modified electrochemical dealloying procedure is demonstrated to be an excellent electrocatalyst material for reductive degradation of both carbon tetrachloride and chlorobenzene.
متن کامل