Well-balanced mesh-based and meshless schemes for the shallow-water equations
نویسندگان
چکیده
We formulate a general criterion for the exact preservation of the “lake at rest” solution in general mesh-based and meshless numerical schemes for the strong form of the shallowwater equations with bottom topography. The main idea is a careful mimetic design for the spatial derivative operators in the momentum flux equation that is paired with a compatible averaging rule for the water column height arising in the bottom topography source term. We prove consistency of the mimetic difference operators analytically and demonstrate the well-balanced property numerically using finite difference and RBF-FD schemes in the oneand two-dimensional cases.
منابع مشابه
On the Advantage of Well-Balanced Schemes for Moving-Water Equilibria of the Shallow Water Equations
This note aims at demonstrating the advantage of moving-water well-balanced schemes over still-water well-balanced schemes for the shallow water equations. We concentrate on numerical examples with solutions near a moving-water equilibrium. For such examples, still-water well-balanced methods are not capable of capturing the small perturbations of the moving-water equilibrium and may generate s...
متن کاملWell-balanced r-adaptive and moving mesh space-time discontinuous Galerkin method for the shallow water equations
In this article we introduce a well-balanced discontinuous Galerkin method for the shallow water equations on moving meshes. Particular emphasis will be given on r-adaptation in which mesh points of an initially uniform mesh move to concentrate in regions where interesting behaviour of the solution is observed. Obtaining well-balanced numerical schemes for the shallow water equations on fixed m...
متن کاملAdaptive Techniques Applied to Well-balanced Schemes for Shallow Water Flows
Well-balancing is a property that enables numerical schemes to accurately capture quasi steady-state flows governed by conservation laws with source terms [2, 3, 5, 6]. These schemes are typically based on shock-capturing technology and their computational cost can be large if high accuracy in the approximated solution is required. Structured adaptive mesh refinement [1] is a technique that is ...
متن کاملWell-balanced and energy stable schemes for the shallow water equations with discontinuous topography
We consider the shallow water equations with non-flat bottom topography. The smooth solutions of these equations are energy conservative, whereas weak solutions are energy stable. The equations possess interesting steady states of lake at rest as well as moving equilibrium states. We design energy conservative finite volume schemes which preserve (i) the lake at rest steady state in both one an...
متن کاملCoupling superposed 1D and 2D shallow-water models: source terms and finite volume schemes
We study the superposition of 1D and 2D shallow-water equations with non-flat topographies, in the context of river flood modeling. Since we superpose both models in the bidimensional areas, we focus on the definition of the coupling term required in the 1D equations. Using explicit finite volume schemes, we propose a definition of the discrete coupling term leading to schemes globally well-bal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017