Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables
ثبت نشده
چکیده
Over the last two and half decades, strong evidence showed that the terrestrial ecosystems are acting as a net sink for atmospheric carbon. However the spatial and temporal patterns of variation in the sink are not well known. In this study, we examined latitudinal patterns of interannual variability (IAV) in net ecosystem exchange (NEE) of CO2 based on 163 site-years of eddy covariance data, from 39 northern-hemisphere research sites located at latitudes ranging from 291N to 641N. We computed the standard deviation of annual NEE integrals at individual sites to represent absolute interannual variability (AIAV), and the corresponding coefficient of variation as a measure of relative interannual variability (RIAV). Our results showed decreased trends of annual NEE with increasing latitude for both deciduous broadleaf forests and evergreen needleleaf forests. Gross primary production (GPP) explained a significant proportion of the spatial variation of NEE across evergreen needleleaf forests, whereas, across deciduous broadleaf forests, it is ecosystem respiration (Re). In addition, AIAV in GPP and Re increased significantly with latitude in deciduous broadleaf forests, but AIAV in GPP decreased significantly with latitude in evergreen needleleaf forests. Furthermore, RIAV in NEE, GPP, and Re appeared to increase significantly with latitude in deciduous broadleaf forests, but not in evergreen needleleaf forests. Correlation analyses showed air temperature was the primary environmental factor that determined RIAV of NEE in Correspondence: Wenping Yuan, tel. 1 1 605 594 6526, e-mail: [email protected] Global Change Biology (2009), doi: 10.1111/j.1365-2486.2009.01870.x r 2009 Blackwell Publishing Ltd 1 deciduous broadleaf forest across the North American sites, and none of the chosen climatic factors could explain RIAV of NEE in evergreen needleleaf forests. Mean annual NEE significantly increased with latitude in grasslands. Precipitation was dominant environmental factor for the spatial variation of magnitude and IAV in GPP and Re in grasslands.
منابع مشابه
Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables
Over the last two and half decades, strong evidence showed that the terrestrial ecosystems are acting as a net sink for atmospheric carbon. However the spatial and temporal patterns of variation in the sink are not well known. In this study, we examined latitudinal patterns of interannual variability (IAV) in net ecosystem exchange (NEE) of CO2 based on 163 site-years of eddy covariance data, f...
متن کاملThe interannual variability of Africa’s ecosystem productivity: a multi-model analysis
We are comparing spatially explicit processmodel based estimates of the terrestrial carbon balance and its components over Africa and confront them with remote sensing based proxies of vegetation productivity and atmospheric inversions of land-atmosphere net carbon exchange. Particular emphasis is on characterizing the patterns of interannual variability of carbon fluxes and analyzing the facto...
متن کاملPhysiological and environmental regulation of interannual variability in CO2 exchange on rangelands in the western United States
For most ecosystems, net ecosystem exchange of CO2 (NEE) varies within and among years in response to environmental change. We analyzed measurements of CO2 exchange from eight native rangeland ecosystems in the western United States (58 site-years of data) in order to determine the contributions of photosynthetic and respiratory (physiological) components of CO2 exchange to environmentally caus...
متن کاملتوصیف فرکتالی تاج پوشش درختان و چگالی ظاهری خاک در جنگلهای زاگرس (مطالعه موردی: منطقه حفاظت شده بیستون)
In Zagros forest ecosystem, spatial variability of soil and vegetation properties are controlled by series of physical and biological parameters including topographical and anthropogenic factors. Distribution patterns of these properties are greatly variable. In the current study, geostatistics and fractal theory were used to assess the spatial variability of tree canopy and soil bulk density i...
متن کاملPartitioning interannual variability in net ecosystem exchange between climatic variability and functional change.
Interannual variability (IAV) in net ecosystem exchange of carbon (NEE) is a critical factor in projections of future ecosystem changes. However, our understanding of IAV is limited because of the difficulty in isolating its numerous causes. We proposed that IAV in NEE is primarily caused by climatic variability, through its direct effects on photosynthesis and respiration and through its indir...
متن کامل