On Toughness and Hamiltonicity of 2K2-Free Graphs

نویسندگان

  • Hajo Broersma
  • Viresh Patel
  • Artem V. Pyatkin
چکیده

The toughness of a (non-complete) graph G is the minimum value of t for which there is a vertex cut A whose removal yields |A|/t components. Determining toughness is an NP-hard problem for general input graphs. The toughness conjecture of Chvátal, which states that there exists a constant t such that every graph on at least 3 vertices with toughness at least t is hamiltonian, is still open for general graphs. We extend some known toughness results for split graphs to the more general class of 2K2-free graphs, i.e. graphs that do not contain two vertex-disjoint edges as an induced subgraph. We prove that the problem of determining toughness is polynomially solvable and that Chvátal’s toughness conjecture is true for 2K2-free graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toughness and hamiltonicity in k-trees

We consider toughness conditions that guarantee the existence of a hamiltonian cycle in ktrees, a subclass of the class of chordal graphs. By a result of Chen et al. 18-tough chordal graphs are hamiltonian, and by a result of Bauer et al. there exist nontraceable chordal graphs with toughness arbitrarily close to 4 . It is believed that the best possible value of the toughness guaranteeing hami...

متن کامل

Recent research in Graph Theory

A well-known and fundamental property of graphs is Hamiltonicity. A connected graph is Hamiltonian if it contains a spanning cycle. Determining if a graph is Hamiltonian is known as a NP-complete problem and no satisfactory characterization exists. Nevertheless, many sufficient conditions for Hamiltonicity were found, usually expressed in terms of degree, connectivity, density, toughness, indep...

متن کامل

Chromatic bounds for some classes of 2K2-free graphs

A hereditary class G of graphs is χ-bounded if there is a χ-binding function, say f such that χ(G) ≤ f(ω(G)), for every G ∈ G, where χ(G) (ω(G)) denote the chromatic (clique) number of G. It is known that for every 2K2-free graph G, χ(G) ≤ ( ω(G)+1 2 ) , and the class of (2K2, 3K1)-free graphs does not admit a linear χ-binding function. In this paper, we are interested in classes of 2K2-free gr...

متن کامل

The maximum number of edges in 2K2-free graphs of bounded degree

We call a graph 2K2-free if it is connected and does not contain two independent edges as an induced subgraph. The assumption of connectedness in this definition only serves to eliminate isolated vertices. Wagon [6] proved that x(G) ~ w(G)[w(G) + 1]/2 if G is 2Krfree where x(G) and w(G) denote respectively the chromatic number and maximum clique size of G. Further properties of 2K2-free graphs ...

متن کامل

Colouring of ( P3 ∪ P2)-free graphs

The class of 2K2-free graphs and its various subclasses have been studied in a variety of contexts. In this paper, we are concerned with the colouring of (P3 ∪P2)-free graphs, a super class of 2K2-free graphs. We derive a O(ω3) upper bound for the chromatic number of (P3 ∪P2)-free graphs, and sharper bounds for (P3 ∪P2, diamond)-free graphs, where ω denotes the clique number. By applying simila...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2014