Matchings in Graphs
ثبت نشده
چکیده
We know that counting perfect matchings is polynomial time when we restrict ourselves to the class of planar graphs. Generally speaking, the decision and search versions of a problem turn out to be “easier” than the counting question. For example, the problem of determining if a perfect matching exists, and finding one when it does, is polynomial time in general graphs, while the question of counting all perfect matchings in a graph is #P-complete, and thus may be considered a significantly harder problem. Note that using the decision algorithm as a black box, one might always answer the search question in polynomial time, without looking further into the structure of the graph (iterate over all edges, try to throw them out and query the decision oracle). It is not known, however, whether this inherently sequential strategy can be converted into a parallel algorithm. In the case of planar graphs, we encounter something counter-intuitive — we may count the number of perfect matchings in NC, but it is not known how to find one when it exists in NC. In today’s lecture, we will see how to appeal to the NC counting algorithm as a subroutine to find a perfect matching on the subclass of bipartite graphs (that is, planar bipartite graphs).
منابع مشابه
Perfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملCoverings, matchings and paired domination in fuzzy graphs using strong arcs
The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...
متن کاملRelationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications
ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...
متن کاملOn the Eccentric Connectivity Index of Unicyclic Graphs
In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.
متن کاملGlobal Forcing Number for Maximal Matchings under Graph Operations
Let $S= \{e_1,\,e_2, \ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$. The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$, where $d_i=1$ if $e_i\in M$ and $d_i=0$ otherwise, for each $i\in\{1,\ldots , k\}$. We say $S$ is a global forcing set for maximal matchings of $G$ if $...
متن کاملCounting Matchings with k Unmatched Vertices in Planar Graphs
We consider the problem of counting matchings in planar graphs. While perfect matchings in planar graphs can be counted by a classical polynomial-time algorithm [26, 33, 27], the problem of counting all matchings (possibly containing unmatched vertices, also known as defects) is known to be #P-complete on planar graphs [23]. To interpolate between the hard case of counting matchings and the eas...
متن کامل