Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process.

نویسندگان

  • Jill Donelan
  • William Boucher
  • Nikoletta Papadopoulou
  • Michael Lytinas
  • Dean Papaliodis
  • Paul Dobner
  • Theoharis C Theoharides
چکیده

Many skin disorders are associated with increased numbers of activated mast cells and are worsened by stress; however, the mechanism underlying these processes is not understood. Corticotropin-releasing hormone (CRH) is secreted under stress from the hypothalamus, but also in the skin, where it induces mast cell activation and vascular permeability. We investigated the effect of CRH in a number of animal models by using i.v. Evans blue extravasation as a marker of vascular permeability. Intradermal CRH is among the most potent peptides at 100 nM, its effect being nearly comparable to that of neurotensin (NT). Pretreatment of skin injection sites with the NT receptor antagonist SR48692 blocks CRH-induced vascular permeability, which is diminished in NT-/- mice, implying that NT is necessary for the effect of CRH. CRH and NT precursor mRNA are shown to be expressed in both dorsal root ganglia and skin, whereas the latter also expresses mRNA for prohormone convertase 5, an enzyme that cleaves pro-NT into its active form. We also show that the effect of both CRH and NT is absent in W/W(v) mast cell-deficient mice; however, only a fraction of skin mast cells express CRH receptors, as shown by FACS analysis of CRH receptor (CRHR) and c-kit double-positive disaggregated mouse skin mast cells. These findings suggest that CRH induces skin vascular permeability through NT acting on mast cells and that both peptides should be considered in the pathogenesis of skin disorders exacerbated by stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potent mast cell degranulation and vascular permeability triggered by urocortin through activation of corticotropin-releasing hormone receptors.

Urocortin (Ucn) is related to corticotropin-releasing hormone (CRH), and both are released in the brain under stress where they stimulate CRH 1 and 2 receptors (CRHR). Outside the brain, they may have proinflammatory actions through activation of mast cells, which are located perivascularly close to nerve endings and degranulate in response to acute psychological stress. Here, we report that a ...

متن کامل

Neurotensin and CRH Interactions Augment Human Mast Cell Activation

Stress affects immunity, but the mechanism is not known. Neurotensin (NT) and corticotropin-releasing hormone (CRH) are secreted under stress in various tissues, and have immunomodulatory actions. We had previously shown that NT augments the ability of CRH to increase mast cell-dependent skin vascular permeability in rodents. Here we show that NT triggered human mast cell degranulation and sign...

متن کامل

A neurotensin receptor antagonist inhibits acute immobilization stress-induced cardiac mast cell degranulation, a corticotropin-releasing hormone-dependent process.

Stress worsens certain disorders such as migraines or asthma, and has also been implicated in sudden myocardial arrest. It was previously shown that acute psychological stress by immobilization results in dura mast cell degranulation, an effect blocked by pretreatment with antiserum against corticotropin-releasing hormone (CRH). Moreover, CRH was recently shown to induce skin mast cell degranul...

متن کامل

Mast cells as targets of corticotropin-releasing factor and related peptides.

Several inflammatory skin conditions, including atopic dermatitis (AD) and psoriasis, are exacerbated by stress. Recent evidence suggests that crosstalk between mast cells, neurons and keratinocytes might be involved in such exacerbation. Mast cells are distributed widely in the skin, are present in increased numbers in AD and are located in close proximity to substance P- or neurotensin-contai...

متن کامل

Corticotropin-releasing hormone and the blood-brain-barrier.

Increased blood-brain-barrier (BBB) permeability precedes any clinical or pathologic signs and is critical in the pathogenesis of multiple sclerosis (MS) and brain metastases. CD4+ TH1 cells mediate demyelination in MS, but how they get sensitized and enter the brain to induce brain inflammation remains obscure. TH2 cytokines associated with allergic disorders have recently been implicated in M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 20  شماره 

صفحات  -

تاریخ انتشار 2006