Quantitative Immobilization of Phthalocyanine onto Bacterial Cellulose for Construction of a High-Performance Catalytic Membrane Reactor
نویسندگان
چکیده
We report the fabrication of a tetra-amino cobalt (II) phthalocyanine (CoPc)-immobilized bacterial cellulose (BC) functional nanocomposite, CoPc@BC, by quantitative immobilization of CoPc onto a BC membrane. Lab-cultured BC was oxidized by NaIO₄ to generate aldehyde groups on BC for the subsequent CoPc immobilization, the processing conditions were optimized by monitoring both the generated aldehyde content and the resulting CoPc loading. X-ray photoelectron spectroscopy (XPS) was employed to characterize the change of the element bonding environment during the functionalization processes. The CoPc@BC functional nanocomposite was utilized for the treatment of reactive red X-3B dye wastewater. The CoPc molecules in the CoPc@BC nanocomposite can function as an "antenna" to adsorb the target anionic dye molecules, the adsorption takes place both on the surface and in the interior of CoPc@BC. A catalytic membrane reactor (CMR) was assembled with the CoPc@BC nanocomposite, the performance of CMR was evaluated based on the catalytic oxidation behavior of reactive red X-3B, with H₂O₂ as an oxidant. Highly-reactive hydroxyl radical (OH) was involved in the catalytic oxidation process, as detected by electron paramagnetic resonance (EPR). Under optimal operating conditions of a flow rate of 6 mL/min, a reaction temperature of 50 °C, and an H₂O₂ concentration of 10 mmol/L, the decoloration rate of CMR was as high as 50 μmol⋅min-1⋅g-1.
منابع مشابه
Modeling of Ethylbenzene Dehydrogenation Membrane Reactor to Investigate the Potential Application of a Microporous Hydroxy Sodalite Membrane
In this study the catalytic dehydrogenation of ethylbenzene to styrene was investigated in a simulated tubular sodalite membrane reactor. The high quality microporous sodalite membrane was synthesized by direct hydrothermal method and characterized by single gas permeation measurements. The performance of the prepared membrane showed high potential for application in a dehydrogenation membrane ...
متن کاملChemically-modified cellulose paper as a microstructured catalytic reactor.
We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobiliza...
متن کاملExpression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes.
Bifunctional fusion proteins consisting of organophosphate hydrolase (OPH) moieties linked to a Clostridium-derived cellulose-binding domain (CBD) were shown to be highly effective in degrading organophosphate nerve agents, enabling purification and immobilization onto different cellulose materials in essentially a single step. Enzyme kinetics studies were performed for the CBD-OPH fusions usin...
متن کاملPhysicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor.
Immobilization of brewing yeast onto a cellulose-based carrier obtained from spent grains, a brewing byproduct, by acid/base treatment has been studied in a continuously operating bubble-column reactor. The aim of this work was to study the mechanisms of brewing yeast immobilization onto spent grain particles through the information on physicochemical surface properties of brewing yeast and spe...
متن کاملDirect DNA Immobilization onto a Carbon Nanotube Modified Electrode: Study on the Influence of pH and Ionic Strength
Over the past years, DNA biosensors have been developed to analyze DNA interaction and damage that have important applications in biotechnological researches. The immobilization of DNA onto a substrate is one key step for construction of DNA electrochemical biosensors. In this report, a direct approach has been described for immobilization of single strand DNA onto carboxylic acid-functionalize...
متن کامل