PCA for Gender Estimation: Which Eigenvectors Contribute?

نویسندگان

  • Koray Balci
  • Volkan Atalay
چکیده

A pruning schema is applied to Multi-Layer Perceptron (MLP) gender classi£er. MLP uses eigenvector coef£cients of the face space created by Principal Component Analysis (PCA). We show that pruning improves the initial MLP performance by preserving the most effective input while eliminating most of the units and connections. Pruning is also used as a tool to monitor which eigenvectors contribute to gender estimation. In addition, by usage of FERET face database, we test the PCA approach on gender estimation task in a bigger setting than the previous experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

On-Line Transform Domain LMS Algorithm Implemented with PCA Learning

An on-line transform domain Least Mean Square (LMS) algorithm based on a neural approach is proposed. A temporal Principal Component Analysis (PCA) network is used as an orthonormalization layer in the transform domain LMS filter. Since PCA learning is an on-line learning algorithm, an on-line transform domain LMS filter can be easily implemented. Moreover, a modified Kalman estimation, which c...

متن کامل

Location and dimensionality estimation of geological bodies using eigenvectors of "Computed Gravity Gradient Tensor"

One of the methodologies employed in gravimetry exploration is eigenvector analysis of Gravity Gradient Tensor (GGT) which yields a solution including an estimation of a causative body’s Center of Mass (COM), dimensionality and strike direction. The eigenvectors of GGT give very rewarding clues about COM and strike direction. Additionally, the relationships between its components provide a quan...

متن کامل

Selection of Eigenvectors for Face Recognition

Face recognition has advantages over other biometric methods. Principal Component Analysis (PCA) has been widely used for the face recognition algorithm. PCA has limitations such as poor discriminatory power and large computational load. Due to these limitations of the existing PCA based approach, we used a method of applying PCA on wavelet subband of the face image and two methods are proposed...

متن کامل

Center of Mass Estimation of Simple Shaped Magnetic Bodies Using Eigenvectors of Computed Magnetic Gradient Tensor

Computed Magnetic Gradient Tensor (CMGT) includes the first derivatives of three components of magnetic field of a body. At the eigenvector analysis of Gravity Gradient Tensors (GGT) for a line of poles and point pole, the eigenvectors of the largest eigenvalues (first eigenvectors) point precisely toward the Center of Mass (COM) of a body. However, due to the nature of the magnetic field, it i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002