BdVRN1 Expression Confers Flowering Competency and Is Negatively Correlated with Freezing Tolerance in Brachypodium distachyon

نویسندگان

  • Ying Feng
  • Yanhai Yin
  • Shuizhang Fei
چکیده

Vernalization is an essential process by which many temperate plant species acquire competence for flowering. Brachypodium distachyon is a model plant for temperate grasses including many cool-season forage and turfgrasses and cereals. Grasses with spring growth habit do not require vernalization for flowering and are typically less winter hardy. Yet the connection between vernalization and freezing tolerance remain unclear. The diverse requirement of vernalization for flowering makes it an ideal choice for studying the relationship between vernalization and freezing tolerance. Here, we isolated and analyzed the spatial and temporal expression patterns of two vernalization related homologous genes, BdVRN1 and BdVRN3 in Bd21, a non-vernalization-requiring accession, and Bd29-1, an accession shown to be vernalization-requiring. We showed that expression of BdVRN1 and BdVRN3 is independent of vernalization in Bd21, but is vernalization dependent in Bd29-1. Moreover, vernalization-induced expression of BdVRN1 appears to precede that of BdVRN3 in Bd29-1. Bd21 RNAi knockdown mutants for BdVRN1 conferred vernalization requirement for flowering, and reduced the expression of BdVRN3. Both Bd29-1 and the BdVRN1 RNAi mutants of Bd21 exhibited reduced freezing tolerance upon vernalization treatment. Cold-responsive genes BdCBF2, BdCBF3, BdCBF5, BdCBF6, and BdDREB2A were all constitutively expressed at a high level in the BdVRN1 RNAi mutants of Bd21. Taken together, our results suggest that expression of BdVRN1 promotes flowering by upregulating BdVRN3, and gaining the competency for flowering reduces freezing tolerance in Brachypodium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative analysis of the cold acclimation and freezing tolerance capacities of seven diploid Brachypodium distachyon accessions

BACKGROUND AND AIMS Cold is a major constraint for cereal cultivation under temperate climates. Winter-hardy plants interpret seasonal changes and can acquire the ability to resist sub-zero temperatures. This cold acclimation process is associated with physiological, biochemical and molecular alterations in cereals. Brachypodium distachyon is considered a powerful model system to study the resp...

متن کامل

Identification and Characterization of NF-Y Transcription Factor Families in the Monocot Model Plant Brachypodium distachyon

BACKGROUND Nuclear Factor Y (NF-Y) is a heterotrimeric transcription factor composed of NF-YA, NF-YB and NF-YC proteins. Using the dicot plant model system Arabidopsis thaliana (Arabidopsis), NF-Y were previously shown to control a variety of agronomically important traits, including drought tolerance, flowering time, and seed development. The aim of the current research was to identify and cha...

متن کامل

Brachypodium distachyon BdPP2CA6 Interacts with BdPYLs and BdSnRK2 and Positively Regulates Salt Tolerance in Transgenic Arabidopsis

The phytohormone abscisic acid (ABA) is essential in plant responding to biotic and abiotic stresses. Although ABA signaling model is well established in Arabidopsis, ABA receptor PYL family and clade A PP2C subfamily are not yet characterized in monocot model plant Brachypodium distachyon. In this study, we identified 12 PYLs and 8 clade A PP2Cs from B. distachyon genome and successfully clone...

متن کامل

PHYTOCHROME C is an essential light receptor for photoperiodic flowering in the temperate grass, Brachypodium distachyon.

We show that in the temperate grass, Brachypodium distachyon, PHYTOCHROME C (PHYC), is necessary for photoperiodic flowering. In loss-of-function phyC mutants, flowering is extremely delayed in inductive photoperiods. PHYC was identified as the causative locus by utilizing a mapping by sequencing pipeline (Cloudmap) optimized for identification of induced mutations in Brachypodium. In phyC muta...

متن کامل

Memory of the vernalized state in plants including the model grass Brachypodium distachyon

Plant species that have a vernalization requirement exhibit variation in the ability to "remember" winter - i.e., variation in the stability of the vernalized state. Studies in Arabidopsis have demonstrated that molecular memory involves changes in the chromatin state and expression of the flowering repressor FLOWERING LOCUS C, and have revealed that single-gene differences can have large effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017