Enhanced activity of the free radical producing enzyme xanthine oxidase in hypoxic rat liver. Regulation and pathophysiologic significance.

نویسندگان

  • C A Brass
  • J Narciso
  • J L Gollan
چکیده

It has been widely proposed that conversion of xanthine dehydrogenase (XDH) to its free radical-producing form, xanthine oxidase (XOD), underlies ischemic/reperfusion injury, although the relationship of this conversion to hypoxia and its physiologic control have not been defined. This study details the time course and control of this enzymatic interconversion. In a functionally intact, isolated perfused rat liver model, mean % XOD activity increased as a function of both the duration (25 to 45% in 3 h) and degree (r = 0.97) of hypoxia. This process was markedly accelerated in ischemic liver by an overnight fast (45 vs. 30% at 2 h), and by imposing a short period of in vivo ischemia (cardiopulmonary arrest 72%). Moreover, only under these conditions was there a significant rise in the XOD activity due to the conformationally altered XDH molecule (XODc, 18%), as well as concomitant morphologic injury. Neither circulating white blood cells nor thrombosis appeared to contribute to the effects of in vivo ischemia on enzyme conversion. Thus, it is apparent that conversion to the free radical-producing state, with high levels of XOD activity and concurrent cellular injury, can be achieved during a relatively short period of hypoxia under certain well-defined physiologic conditions, in a time course consistent with its purported role in modulating reperfusion injury. These data also suggest that the premorbid condition of organ donors (e.g., nutritional status and relative state of hypoxia) is important in achieving optimal organ preservation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Onion, a Potent Inhibitor of Xantine Oxidase

Onion (Allium Cepa) contains high levels of flavonoids. Although there are many studies indicating the inhibitory effects of flavonoids on xanthine oxidase, there is no report on the effect of onion on this enzyme. Therefore, in the present study, the inhibitory effects of onion on xanthine oxidase are investigated. Fresh filtered juice of onion was prepared and its inhibitory effect on guine...

متن کامل

Onion, a Potent Inhibitor of Xantine Oxidase

Onion (Allium Cepa) contains high levels of flavonoids. Although there are many studies indicating the inhibitory effects of flavonoids on xanthine oxidase, there is no report on the effect of onion on this enzyme. Therefore, in the present study, the inhibitory effects of onion on xanthine oxidase are investigated. Fresh filtered juice of onion was prepared and its inhibitory effect on guine...

متن کامل

Evaluation of the role of xanthine oxidase in myocardial reperfusion injury.

The free radical-generating enzyme xanthine oxidase has been hypothesized to be a central mechanism of the injury which occurs in postischemic tissues; however, its importance remains controversial. Much attention has focused on the role of this enzyme in myocardial reperfusion injury. While xanthine oxidase has been observed in ischemic tissue homogenates, the presence and importance of radica...

متن کامل

Rapid Conversion to High Xanthine Oxidase Activity in Viable Kupifer Cells

It has been widely postulated that the central mechanism of hepatic reperfusion injury involves the conversion, during ischemia, of the enzyme xanthine dehydrogenase (XDH) to its free radical-producing form, xanthine oxidase (XOD). However, this theory has been questioned because (a) XDH to XOD conversion in whole liver occurs very slowly; (b) the cellular distribution of XDH/XOD is unclear; an...

متن کامل

Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol.

The aim of this work was to study the mechanism of free radical formation in type 1 diabetes and its possible prevention. We have found oxidation of blood glutathione and an increase in plasma lipoperoxide levels in both human type 1 diabetes and experimental diabetes. Peroxide production by mitochondria does not increase in diabetes. On the contrary, the activity of xanthine oxidase, a superox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 87 2  شماره 

صفحات  -

تاریخ انتشار 1991