Functionalization effect on the thermal conductivity of graphene- polymer nanocomposites
نویسندگان
چکیده
(2014) Surface functionalization on the thermal conductivity of graphene–polymer nanocomposites. which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted. Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source: Exploring thermal transport in graphene-polymer nanocomposite is significant to its applications with better thermal properties. Interfacial thermal conductance between graphene and polymer matrix plays a critical role in the improvement of thermal conductivity of graphene-polymer nanocomposite. Unfortunately, it is still challenging to understand the interfacial thermal transport between graphene nanofiller and polymer matrix at small material length scale. To this end, using non-equilibrium molecular dynamics simulations, we investigate the interfacial thermal conductance of graphene-polyethylene (PE) nanocomposite. The influence of functionalization with hydrocarbon chains on the interfacial thermal conductance of graphene-polymer nanocomposites was studied, taking into account of the effects of model size and thermal conductivity of graphene. An analytical model is also used to calculate the thermal conductivity of nanocomposite. The results are considered to contribute to development of new graphene-polymer nanocomposites with tailored thermal properties.
منابع مشابه
Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.
Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt ...
متن کاملThermal Transport in Graphene-Polymer Nanocomposites
Graphene-polymer nanocomposites have attracted considerable attention due to their unique properties, such as high thermal conductivity (~3000 W mK), mechanical stiffness (~ 1 TPa) and electronic transport properties. Relatively, the thermal performance of graphene-polymer composites has not been well investigated. The major technical challenge is to understand the interfacial thermal transport...
متن کاملEffect of Functionalization Process on Thermal Conductivity of Graphene Nanofluids
In this research, Graphene was synthesized by chemical vapor deposition (CVD) method in atmosphere pressure (14.7 psi). Different functionalization method was used for oxidizing of graphene such as acid and alkaline treatments. The Functionalized graphene (FG) was characterized by FTIR and Raman spectroscopy. Nanofluid with water and different concentration (0.05, 0.15 and 0.25 wt %) of ...
متن کاملA versatile chemical tool for the preparation of conductive graphene-based polymer nanocomposites.
A general route for the functionalization of graphene and graphene derivatives with a low molecular weight polymer by thiol-radical reactions is reported. Polymer-modified graphene is employed as a filler for high density polyethylene to generate materials with good electrical conductivity.
متن کاملMultiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites
Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall ...
متن کامل