Mutually Disjoint Steiner Systems S(5, 8, 24) and 5-(24,12,48) Designs
نویسندگان
چکیده
We demonstrate that there are at least 50 mutually disjoint Steiner systems S(5, 8, 24) and there are at least 35 mutually disjoint 5-(24, 12, 48) designs. The latter result provides the existence of a simple 5-(24, 12, 6m) design for m = 24, 32, 40, 48, 56, 64, 72, 80, 112, 120, 128, 136, 144, 152, 160, 168, 200, 208, 216, 224, 232, 240, 248 and 256.
منابع مشابه
Mutually disjoint t-designs and t-SEEDs from extremal doubly-even self-dual codes
It is known that extremal doubly-even self-dual codes of length n ≡ 8 or 0 (mod 24) yield 3or 5-designs respectively. In this paper, by using the generator matrices of bordered double circulant doubly-even self-dual codes, we give 3-(n, k; m)-SEEDs with (n, k, m) ∈ {(32, 8, 5), (56, 12, 9), (56, 16, 9), (56, 24, 9), (80, 16, 52)}. With the aid of computer, we obtain 22 generator matrices of bor...
متن کاملOn the Existence of Certain Steiner Systems
In this paper we prove the existence of certain Steiner systems. The results of this paper are divided into three sections: In section 1, we investigate Steiner systems of type S(3, 4, 8). In section 2, we study Steiner systems of type S(5, 6, 12), and in the last section we study Steiner systems of type (5, 8, 24), the MOG and the Hexacode. Mathematics Subject Classification: 20C15, 20E28
متن کاملThe Steiner systems S(2, 4, 25) with nontrivial automorphism group
There are exactly 16 non-isomorphic Steiner systems S(2,4, 25) with nontrivial automorphism group. It is interesting to note that each of these designs has an automorphism of order 3. These 16 designs are presented along with their groups and other invariants. In particular, we determine and tabulate substructures for each of the sixteen designs inciuding Fano subplanes, ovals, complete 5-arcs,...
متن کاملA Construction of Disjoint Steiner Triple Systems
We show that there are at least 4t + 2 mutually disjoint, isomorphic Steiner triple systems on 6t + 3 points, if t ;?: 4. MiS Subject Classification: OSBOS
متن کاملSome rigid Steiner 5-designs
Hitherto, all known non-trivial Steiner systems S(5, k, v) have, as a group of automorphisms, either PSL(2, v − 1) or PGL(2, v−2 2 ) × C2. In this paper, systems S(5, 6, 72), S(5, 6, 84) and S(5, 6, 108) are constructed that have only the trivial automorphism group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 17 شماره
صفحات -
تاریخ انتشار 2010