Mutually Disjoint Steiner Systems S(5, 8, 24) and 5-(24,12,48) Designs

نویسندگان

  • Makoto Araya
  • Masaaki Harada
چکیده

We demonstrate that there are at least 50 mutually disjoint Steiner systems S(5, 8, 24) and there are at least 35 mutually disjoint 5-(24, 12, 48) designs. The latter result provides the existence of a simple 5-(24, 12, 6m) design for m = 24, 32, 40, 48, 56, 64, 72, 80, 112, 120, 128, 136, 144, 152, 160, 168, 200, 208, 216, 224, 232, 240, 248 and 256.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutually disjoint t-designs and t-SEEDs from extremal doubly-even self-dual codes

It is known that extremal doubly-even self-dual codes of length n ≡ 8 or 0 (mod 24) yield 3or 5-designs respectively. In this paper, by using the generator matrices of bordered double circulant doubly-even self-dual codes, we give 3-(n, k; m)-SEEDs with (n, k, m) ∈ {(32, 8, 5), (56, 12, 9), (56, 16, 9), (56, 24, 9), (80, 16, 52)}. With the aid of computer, we obtain 22 generator matrices of bor...

متن کامل

On the Existence of Certain Steiner Systems

In this paper we prove the existence of certain Steiner systems. The results of this paper are divided into three sections: In section 1, we investigate Steiner systems of type S(3, 4, 8). In section 2, we study Steiner systems of type S(5, 6, 12), and in the last section we study Steiner systems of type (5, 8, 24), the MOG and the Hexacode. Mathematics Subject Classification: 20C15, 20E28

متن کامل

The Steiner systems S(2, 4, 25) with nontrivial automorphism group

There are exactly 16 non-isomorphic Steiner systems S(2,4, 25) with nontrivial automorphism group. It is interesting to note that each of these designs has an automorphism of order 3. These 16 designs are presented along with their groups and other invariants. In particular, we determine and tabulate substructures for each of the sixteen designs inciuding Fano subplanes, ovals, complete 5-arcs,...

متن کامل

A Construction of Disjoint Steiner Triple Systems

We show that there are at least 4t + 2 mutually disjoint, isomorphic Steiner triple systems on 6t + 3 points, if t ;?: 4. MiS Subject Classification: OSBOS

متن کامل

Some rigid Steiner 5-designs

Hitherto, all known non-trivial Steiner systems S(5, k, v) have, as a group of automorphisms, either PSL(2, v − 1) or PGL(2, v−2 2 ) × C2. In this paper, systems S(5, 6, 72), S(5, 6, 84) and S(5, 6, 108) are constructed that have only the trivial automorphism group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2010