Indian hedgehog and beta-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis.

نویسندگان

  • C Niemann
  • A B Unden
  • S Lyle
  • Ch C Zouboulis
  • R Toftgård
  • F M Watt
چکیده

In mammalian epidermis, the level of beta-catenin signaling regulates lineage selection by stem cell progeny. High levels of beta-catenin stimulate formation of hair follicles, whereas low levels favor differentiation into interfollicular epidermis and sebocytes. In transgenic mouse epidermis, overexpression of beta-catenin leads to formation of hair follicle tumors, whereas overexpression of N-terminally truncated Lef1, which blocks beta-catenin signaling, results in spontaneous sebaceous tumors. Accompanying overexpression of beta-catenin is up-regulation of Sonic hedgehog (SHH) and its receptor, Patched (PTCH/Ptch). In DeltaNLef1 tumors Ptch mRNA is up-regulated in the absence of SHH. We now show that PTCH is up-regulated in both human and mouse sebaceous tumors and is accompanied by overexpression of Indian hedgehog (IHH). In normal sebaceous glands IHH is expressed in differentiated sebocytes and the transcription factor GLI1 is activated in sebocyte progenitors, suggesting a paracrine signaling mechanism. PTCH1 and IHH are up-regulated during human sebocyte differentiation in vitro and inhibition of hedgehog signaling inhibits growth and stimulates differentiation. Overexpression of DeltaNLef1 up-regulates IHH and stimulates proliferation of undifferentiated sebocytes. We present a model of the interactions between beta-catenin and hedgehog signaling in the epidermis in which SHH promotes proliferation of progenitors of the hair lineages whereas IHH stimulates proliferation of sebocyte precursors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours.

When beta-catenin signalling is disturbed from mid-gestation onwards lineage commitment is profoundly altered in postnatal mouse epidermis. We have investigated whether adult epidermis has the capacity for beta-catenin-induced lineage conversion without prior embryonic priming. We fused N-terminally truncated, stabilised beta-catenin to the ligand-binding domain of a mutant oestrogen receptor (...

متن کامل

Smad7-induced beta-catenin degradation alters epidermal appendage development.

To assess whether Smad signaling affects skin development, we generated transgenic mice in which a Smad antagonist, Smad7, was induced in keratinocytes, including epidermal stem cells. Smad7 transgene induction perturbed hair follicle morphogenesis and differentiation, but accelerated sebaceous gland morphogenesis. Further analysis revealed that independent of its role in anti-Smad signaling, S...

متن کامل

The Study for Diagnostic Value of β-Catenin Immunohistochemistry Marker in Distinction of Aggressive and Non-Aggressive Basal Cell Carcinoma

Background & Objective: Basal cell carcinoma (BCC) is a common skin cancer arising from the basal layer of the epidermis and its appendages. They are locally invasive, aggressive, and destructive of skin and the surrounding structures. β-Catenin is a multifunctional protein located to the intracellular side of the cytoplasmic membrane coded by the CTNNB1 gene, which maps to chr...

متن کامل

Beta-catenin Forms Protein Aggregation at High Concentrations in HEK293TCells

Background: The canonical Wnt signal transduction (or the Wnt/β-catenin pathway) plays a crucial role in the development of animals and in carcinogenesis. Beta-catenin is the central component of this signaling pathway. The activation of Wnt/β-catenin signaling results in the cytoplasmic and nuclear accumulation of β-catenin. In the nucleus, β-catenin interacts with the TCF/LEF transcription fa...

متن کامل

O-44: Characterisation of Monotreme CaseinsReveals Lineage Specific Expansion of an AncestralCasein Locus in Mammals

Background: One important reproductive characteristic of Mammals is the production of milk to nurse the neonate. In order to better understand the evolution of milk we have investigated gene expression in milk cells from monotremes which are the most ancient representative of the mammalian lineage. Materials and Methods: Using a milk cell cDNA sequencing approach we characterise milk protein se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2003