The dominant eigenvalue of an essentially nonnegative tensor

نویسندگان

  • Liping Zhang
  • Liqun Qi
  • Ziyan Luo
  • Yi Xu
چکیده

It is well known that the dominant eigenvalue of a real essentially nonnegative matrix is a convex function of its diagonal entries. This convexity is of practical importance in population biology, graph theory, demography, analytic hierarchy process, and so on. In this paper, the concept of essentially nonnegativity is extended frommatrices to higher-order tensors, and the convexity and log convexity of dominant eigenvalues for such a class of tensors are established. Particularly, for any nonnegative tensor, the spectral radius turns out to be the dominant eigenvalue and hence possesses these convexities. Finally, an algorithm is given to calculate the dominant eigenvalue, and numerical results are reported to show the effectiveness of the proposed algorithm. Copyright © 2013 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming

Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentiall...

متن کامل

Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor

An iterative method for finding the largest eigenvalue of a nonnegative tensor was proposed by Ng, Qi, and Zhou in 2009. In this paper, we establish an explicit linear convergence rate of the Ng–Qi–Zhou method for essentially positive tensors. Numerical results are given to demonstrate linear convergence of the Ng–Qi–Zhou algorithm for essentially positive tensors. Copyright © 2011 John Wiley &...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

Essentially Positive Tensors

The Perron-Frobenius Theorem for irreducible higher order tensors does not guarantee simplicity of the unique positive eigenvalue nor does it guarantee the unique positive eigenvalue is strictly larger than the modulus of any other eigenvalue. Irreducibility of a tensor in relation to a graph is studied. A higher order tensor is essentially positive if it takes the positive cone to its interior...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013