Streptococcus thermophilus Biofilm Formation: A Remnant Trait of Ancestral Commensal Life?
نویسندگان
چکیده
Microorganisms have a long history of use in food production and preservation. Their adaptation to food environments has profoundly modified their features, mainly through genomic flux. Streptococcus thermophilus, one of the most frequent starter culture organisms consumed daily by humans emerged recently from a commensal ancestor. As such, it is a useful model for genomic studies of bacterial domestication processes. Many streptococcal species form biofilms, a key feature of the major lifestyle of these bacteria in nature. However, few descriptions of S. thermophilus biofilms have been reported. An analysis of the ability of a representative collection of natural isolates to form biofilms revealed that S. thermophilus was a poor biofilm producer and that this characteristic was associated with an inability to attach firmly to surfaces. The identification of three biofilm-associated genes in the strain producing the most biofilms shed light on the reasons for the rarity of this trait in this species. These genes encode proteins involved in crucial stages of biofilm formation and are heterogeneously distributed between strains. One of the biofilm genes appears to have been acquired by horizontal transfer. The other two are located in loci presenting features of reductive evolution, and are absent from most of the strains analyzed. Their orthologs in commensal bacteria are involved in adhesion to host cells, suggesting that they are remnants of ancestral functions. The biofilm phenotype appears to be a commensal trait that has been lost during the genetic domestication of S. thermophilus, consistent with its adaptation to the milk environment and the selection of starter strains for dairy fermentations.
منابع مشابه
A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation
Pseudomonas aeruginosa causes devastating chronic pulmonary infections in cystic fibrosis (CF) patients. Although the CF airway is inhabited by diverse species of microorganisms interlaced within a biofilm, many studies focus on the sole contribution of P. aeruginosa pathogenesis in CF morbidity. More recently, oral commensal streptococci have been identified as cohabitants of the CF lung, but ...
متن کاملParallel Evolution in Streptococcus pneumoniae Biofilms
Streptococcus pneumoniae is a commensal human pathogen and the causative agent of various invasive and noninvasive diseases. Carriage of the pneumococcus in the nasopharynx is thought to be mediated by biofilm formation, an environment where isogenic populations frequently give rise to morphological colony variants, including small colony variant (SCV) phenotypes. We employed metabolic characte...
متن کاملInfluence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses.
Biofilms were grown on preconditioned voice prostheses with biosurfactants obtained from probiotic bacteria Lactococcus lactis 53 and Streptococcus thermophilus A in an artificial throat model. Both biosurfactants greatly reduced microbial numbers on prostheses and also induced a decrease in the airflow resistance that occurs on voice prostheses after biofilm formation. This study presents a pr...
متن کاملOccurrence and Evolution of the Paralogous Zinc Metalloproteases IgA1 Protease, ZmpB, ZmpC, and ZmpD in Streptococcus pneumoniae and Related Commensal Species
UNLABELLED The distribution, genome location, and evolution of the four paralogous zinc metalloproteases, IgA1 protease, ZmpB, ZmpC, and ZmpD, in Streptococcus pneumoniae and related commensal species were studied by in silico analysis of whole genomes and by activity screening of 154 representatives of 20 species. ZmpB was ubiquitous in the Mitis and Salivarius groups of the genus Streptococcu...
متن کاملBiofilm Formation by the Hexavalent Chromium Removing Strain Streptococcus salivarius: in Vitro Approach on Abiotic Surfaces
In this study, a strain of lactic acid bacteria Streptococcus salivarius was studied for its capacity to remove hexavalent chromium (Cr (VI)) from a liquid medium and to form biofilm. Both properties are useful for using the strain in bioremediation of metal-contaminated effluents. For biofilm formation capacity, three methods were used: the tube method (TM), the Congo red agar method (CRA) and...
متن کامل