A non local Monge-Ampere equation

نویسندگان

  • Luis Caffarelli
  • Luis Silvestre
چکیده

We introduce a non local analog to the Monge-Ampere operator and show some of its properties. We prove that a global problem involving this operator has C solutions in the full space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise C Estimates at the Boundary for the Monge-ampere Equation

We prove a localization property of boundary sections for solutions to the Monge-Ampere equation. As a consequence we obtain pointwise C2,α estimates at boundary points under appropriate local conditions on the right hand side and boundary data.

متن کامل

A Liouville Theorem for Solutions to the Linearized Monge-ampere Equation

We prove that global Lipschitz solutions to the linearized MongeAmpere equation Lφu := ∑ φuij = 0 must be linear in 2D. The function φ is assumed to have the Monge-Ampere measure detD2φ bounded away from 0 and ∞.

متن کامل

GLOBAL W 2,p ESTIMATES FOR THE MONGE-AMPERE EQUATION

We use a localization property of boundary sections for solutions to the Monge-Ampere equation and obtain global W 2,p estimates under natural assumptions on the domain and boundary data.

متن کامل

Non Linear Elliptic Theory and the Monge-Ampere Equation

The Monge-Ampere equation, plays a central role in the theory of fully non linear equations. In fact we will like to show how the Monge-Ainpere equation, links in some way the ideas comming from the calculus of variations and those of the theory of fully non linear equations. 2000 Mathematics Subject Classification: 35J15, 35J20, 35J70. When learning complex analysis, it was a remarkable fact t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014