Representation of comparison signals in cortical area MT during a delayed direction discrimination task.
نویسندگان
چکیده
Visually guided behavior often involves decisions that are based on evaluating stimuli in the context of those observed previously. Such decisions are made by monkeys comparing two consecutive stimuli, sample and test, moving in the same or opposite directions. We examined whether responses in the motion processing area MT during the comparison phase of this task (test) are modulated by the direction of the preceding stimulus (sample). This modulation, termed comparison signal, was measured by comparing responses to identical test stimuli on trials when it was preceded by sample moving in the same direction (S-trials) with trials when it was preceded by sample moving in a different direction (D-trials). The test always appeared in the neuron's receptive field (RF), whereas sample could appear in the RF or in the contralateral visual field (remote sample). With sample in-RF, we found three types of modulation carried by different sets of neurons: early suppression on S-trials and late enhancement, one on S-trials, and the other on D-trials. Under these conditions, many neurons with and without comparison effects exhibited significant, choice-related activity. Response modulation was also present following the remote sample, even though the information about its direction could only reach MT indirectly via top-down influences. However, unlike on trials with in-RF sample, these signals were dominated by response suppression, shedding light on the contribution of top-down influences to the comparison effects. These results demonstrate that during the task requiring monkeys to compare two directions of motion, MT responses during the comparison phase of this task reflect similarities and differences between the two stimuli, suggesting participation in sensory comparisons. The nature of these signals provides insights into the operation of bottom-up and top-down influences involved in this process.
منابع مشابه
Representation of Comparison Signals in Cortical Area MT During a 1 Delayed Direction Discrimination Task
Representation of Comparison Signals in Cortical Area MT During a 1 Delayed Direction Discrimination Task 2 3 4 Leo L. Lui** and Tatiana Pasternak* 5 6 *Dept oft Neurobiology & Anatomy, University of Rochester, Rochester, 7 NY, USA; 8 **Dept of Physiology, Monash University, Australia 9 , 10 11 12 13 14 15 16 The Running Head 17 Sensory comparisons & perceptual decision in area MT 18 19 20 Cont...
متن کاملTask-related modulation of visual cortex.
We performed a series of experiments to quantify the effects of task performance on cortical activity in early visual areas. Functional magnetic resonance imaging (fMRI) was used to measure cortical activity in several cortical visual areas including primary visual cortex (V1) and the MT complex (MT+) as subjects performed a variety of threshold-level visual psychophysical tasks. Performing spe...
متن کاملMotion information is spatially localized in a visual working-memory task.
We asked if the information about stimulus motion used in a visual working-memory task is localized in space. Monkeys compared the directions of two moving random-dot stimuli, sample and test, separated by a temporal delay and reported whether the stimuli moved in the same or in different directions. By presenting the two comparison stimuli in separate locations in the visual field, we determin...
متن کاملChange in choice-related response modulation in area MT during learning of a depth-discrimination task is consistent with task learning.
What are the neural mechanisms underlying improvement in perceptual performance due to learning? A recent study using motion-direction discrimination suggested that perceptual learning is due to improvements in the "readout" of sensory signals in sensory-motor cortex and not to improvements in neural sensitivity of the sensory cortex. To test the generality of this hypothesis, we examined this ...
متن کاملDifferential activation patterns of occipital and prefrontal cortices during motion processing: evidence from normal and schizophrenic brains.
Visual motion perception is normally mediated by neural processing in the posterior cortex. Focal damage to the middle temporal area (MT), a posterior extrastriate region, induces motion perception impairment. It is unclear, however, how more broadly distributed cortical dysfunction affects this visual behavior and its neural substrates. Schizophrenia manifests itself in a variety of behavioral...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 106 3 شماره
صفحات -
تاریخ انتشار 2011