A new protein binding pocket similarity measure based on comparison of 3D atom clouds: application to ligand prediction

نویسندگان

  • Brice Hoffmann
  • Mikhail Zaslavskiy
  • Jean-Philippe Vert
  • V'eronique Stoven
چکیده

Motivation: Prediction of ligands for proteins of known 3D structure is important to understand structurefunction relationship, predict molecular function, or design new drugs. Results: We explore a new approach for ligand prediction in which binding pockets are represented by atom clouds. Each target pocket is compared to an ensemble of pockets of known ligands. Pockets are aligned in 3D space with further use of convolution kernels between clouds of points. Performance of the new method for ligand prediction is compared to those of other available measures and to docking programs. We discuss two criteria to compare the quality of similarity measures: area under ROC curve (AUC) and classification based scores. We show that the latter is better suited to evaluate the methods with respect to ligand prediction. Our results on existing and new benchmarks indicate that the new method outperforms other approaches, including docking. Availability: The new method is available at http://cbio.ensmp.fr/paris/ Contact: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer Aided Molecular Modeling Of Membrane Metalloprotease

Molecular modeling is a set of computational techniques for construction of 3D structure of a protein especially membrane bound proteins whose structures can not be elucidated using experimental techniques. These techniques has been applied in the study of membrane metalloproteases for comparing wild and mutated enzymes, docking inhibitors in the catalytic site and examination of binding pocket...

متن کامل

Challenges in Protein Structure Prediction and Drug Discovery

Alignment or superposition of multiple flexible ligands in 3D is a key step in rational ligand-based drug design, pharmacophore elucidation and 3D QSAR analysis. We have recently introduced Atomic Property Fields methodology, which utilizes continuous Gaussian-based multicomponent potentials to represent the distributions of physico-chemical atomic properties. Calculation of APF pseudo-energy p...

متن کامل

PatchSurfers: Two methods for local molecular property-based binding ligand prediction.

Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a targe...

متن کامل

Molecular docking study of Papaver alkaloids to some alkaloid receptors

Background and objectives: More than 40 different alkaloids have been obtained from opium the most important of which are morphine, codeine, papaverine, noscapine and tabaine. Opioid alkaloids produce analgesia by affecting areas of the brain that have peptides with pharmacological pseudo-opioid properties. These alkaloids show important effects on some intracellular peptides l...

متن کامل

Binding Ligand Prediction for Proteins Using Partial Matching of Local Surface Patches

Functional elucidation of uncharacterized protein structures is an important task in bioinformatics. We report our new approach for structure-based function prediction which captures local surface features of ligand binding pockets. Function of proteins, specifically, binding ligands of proteins, can be predicted by finding similar local surface regions of known proteins. To enable partial comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009