Nitrogen dioxide enhances allergic airway inflammation and hyperresponsiveness in the mouse.

نویسندگان

  • Matthew E Poynter
  • Rebecca L Persinger
  • Charles G Irvin
  • Kelly J Butnor
  • Hans van Hirtum
  • Wendy Blay
  • Nicholas H Heintz
  • Justin Robbins
  • David Hemenway
  • Douglas J Taatjes
  • Yvonne Janssen-Heininger
چکیده

In addition to being an air pollutant, NO2 is a potent inflammatory oxidant generated endogenously by myeloperoxidase and eosinophil peroxidase. In these studies, we sought to determine the effects of NO2 exposure on mice with ongoing allergic airway disease pathology. Mice were sensitized and challenged with the antigen ovalbumin (OVA) to generate airway inflammation and subsequently exposed to 5 or 25 ppm NO2 for 3 days or 5 days followed by a 20-day recovery period. Whereas 5 ppm NO2 elicited no pathological changes, inhalation of 25 ppm NO2 alone induced acute lung injury, which peaked after 3 days and was characterized by increases in protein, LDH, and neutrophils recovered by BAL, as well as lesions within terminal bronchioles. Importantly, 25 ppm NO2 was also sufficient to cause AHR in mice, a cardinal feature of asthma. The inflammatory changes were ameliorated after 5 days of inhalation and completely resolved after 20 days of recovery after the 5-day inhalation. In contrast, in mice immunized and challenged with OVA, inhalation of 25 ppm NO2 caused a marked augmentation of eosinophilic inflammation and terminal bronchiolar lesions, which extended significantly into the alveoli. Moreover, 20 days postcessation of the 5-day 25 ppm NO2 inhalation regimen, eosinophilic and neutrophilic inflammation, pulmonary lesions, and AHR were still present in mice immunized and challenged with OVA. Collectively, these observations suggest an important role for NO2 in airway pathologies associated with asthma, both in modulation of degree and duration of inflammatory response, as well as in induction of AHR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apocynin and 1400 W prevents airway hyperresponsiveness during allergic reactions in mice.

1. The contribution of reactive nitrogen species to the development of airway hyperresponsiveness in a mouse model of allergic inflammation was investigated by the use of selective inhibitors of nitric oxide and superoxide formation. 2. Sensitized mice, repeatedly challenged with ovalbumin showed a significant (P<0.001, n=9) increase in airway responsiveness measured using whole body plethysmog...

متن کامل

iNOS depletion completely diminishes reactive nitrogen-species formation after an allergic response.

Nitric oxide (NO) shows proinflammatory actions mainly via reactive nitrogen species (RNS) formation through superoxide- and peroxidase-dependent mechanisms. The purpose of this study was to examine the role of inducible NO synthase (iNOS) in RNS production, airway hyperresponsiveness, and inflammation after allergen challenge. Ovalbumin (OVA)-sensitised, iNOS-deficient and wild-type mice were ...

متن کامل

Enhanced Th2 cell differentiation and allergen-induced airway inflammation in Zfp35-deficient mice.

Studies of human asthma and of animal models of allergic airway inflammation revealed a crucial role for Th2 cells in the pathogenesis of allergic asthma. Kruppel-type zinc finger proteins are the largest family of a regulatory transcription factor for cellular development and function. Zinc finger protein (Zfp) 35 is an 18-zinc finger motif-containing Kruppel-type zinc finger protein, while it...

متن کامل

Tanshinone IIA attenuates ovalbumin-induced airway inflammation and hyperresponsiveness in a murine model of asthma

Objective(s): Tanshinone IIA (T. IIA), one of the most pharmacologically active components extracted from Salviae miltiorrhiza, has anti-inflammatory and antioxidant features. The aim of the present study is to investigate the benefit of T. IIA on asthma using a murine model of asthma induced by ovalbumin (OVA). Materials and Methods: Male BALB/c mice were used in the present study. The mice we...

متن کامل

The Endogenous Th17 Response in NO2-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer

Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergicall...

متن کامل

Inhaled inactivated-Mycobacterium phlei modulates γδT cell function and alleviates airway inflammation in a mouse model of asthma.

BACKGROUND Mycobacterium bovis Bacille Calmette-Guérin (BCG) and other mycobacterial infections suppress airway hyperresponsiveness and eosinophilic inflammation in asthma.γδT cells are important modulators of airway function and allergic inflammation. Vγ1+γδT cells increase eosinophilic airway inflammation and airway hyperresponsiveness, while Vγ4+γδT reduce airway hyperresponsiveness. The obj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 290 1  شماره 

صفحات  -

تاریخ انتشار 2006