Retention of halogenated solutes on stationary phases containing heavy atoms.

نویسندگان

  • Toshio Miwa
  • Atsushi Yamamoto
  • Mitsuru Saito
  • Yoshinori Inoue
چکیده

To examine the effects of weak intermolecular interactions on solid-phase extraction (SPE) and chromatographic separation, we synthesized some novel stationary phases with a heavy atom effect layer by immobilizing halogenated aromatic rings and hydroxyl groups onto the surface of a hydrophilic base polymer. Using SPE cartridges packed with the functionalized materials, we found that the heavy atom stationary phases could selectively retain halophenols in organic solvents, such as 1-propanol which blocks the hydrogen bonding, or acetonitrile which blocks the π-π interaction. The extraction efficiency of the materials toward the halophenols depended on the dipole moments of phenoxy groups present as functional groups. On the other hand, the extraction efficiency of solutes toward the functional group depended on their molar refractions, i.e., induced dipole moments. The retention of the solutes to the stationary phase ultimately depended on not only strong intermolecular interactions, but also the effects of weak interactions such as the dispersion force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retention behavior of large polycyclic aromatic hydrocarbons on metalloprotoporphyrin-silica stationary phases.

The retention behavior of large polycyclic aromatic hydrocarbons (LPAHs) (> or = 7 rings) on newly developed metalloplotoporphyrin (MProP)-silica stationary phases is examined and the results are compared to previously reported data for retention of the same solutes on commercially available phases. HPLC columns packed with FeProP-silica are shown to exhibit unique shape selectivity for LPAH re...

متن کامل

Combined supercritical fluid chromatographic methods for the characterization of octadecylsiloxane-bonded stationary phases.

In this paper, we present a combination of a key-solute test based on retention and separation factors of large probe solutes (carotenoid pigments) and a quantitative structure-retention relationship analysis based on the retention factors of small probe solutes (aromatic compounds) to investigate the different chromatographic behavior of octadecylsiloxane-bonded stationary phases of all sorts:...

متن کامل

High-performance liquid chromatography of phosphatidic acids and related polar lipids

The retention behavior of phosphatidic acids (PA) and phosphatidic acid methyl esters (PM) was studied by reversed-phase ion-pair high-performance liquid chromatography (HPLC). The HPLC systems consisted of mobile phases of acetonitrile-methanol-water containing tetraalkylammonium phosphates (TAAP) and stationary phases of alkyl-bonded silica and polystyrene--<:1iviny1benzene resins. The lipid ...

متن کامل

Polar stationary phases for capillary electrochromatography.

This review article summarizes the variety of polar stationary phases that have been employed for capillary electrochromatographic separations. Compared with reversed-phase stationary phases, the polar alternatives provide a completely different retention selectivity towards polar and charged analytes. Different types of polar stationary phases are reviewed, including the possible retention mec...

متن کامل

Novel Atom-Type-Based Topological Descriptors for Simultaneous Prediction of Gas Chromatographic Retention Indices of Saturated Alcohols on Different Stationary Phases

In this work, novel atom-type-based topological indices, named AT indices, were presented as descriptors to encode structural information of a molecule at the atomic level. The descriptors were successfully used for simultaneous quantitative structure-retention relationship (QSRR) modeling of saturated alcohols on different stationary phases (SE-30, OV-3, OV-7, OV-11, OV-17 and OV-25). At first...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 18 5  شماره 

صفحات  -

تاریخ انتشار 2013