Regulation of photosynthetic GAPDH dissected by mutants.
نویسندگان
چکیده
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of higher plants catalyzes an NADPH-consuming reaction, which is part of the Calvin cycle. This reaction is regulated by light via thioredoxins and metabolites, while a minor NADH-dependent activity is constant and constitutive. The major native isozyme is formed by A- and B-subunits in stoichiometric ratio (A2B2, A8B8), but tetramers of recombinant B-subunits (GapB) display similar regulatory features to A2B2-GAPDH. The C-terminal extension (CTE) of B-subunits is essential for thioredoxin-mediated regulation and NAD-induced aggregation to partially inactive oligomers (A8B8, B8). Deletion mutant B(minCTE) is redox insensitive and invariably tetrameric, and chimeric mutant A(plusCTE) acquired redox sensitivity and capacity to aggregate to very large oligomers in presence of NAD. Redox regulation principally affects the turnover number, without significantly changing the affinity for either 1,3-bisphosphoglycerate or NADPH. Mutant R77A of GapB, B(R77A), is down-regulated and mimics the behavior of oxidized GapB under any redox condition, whereas mutant B(E362Q) is constantly up-regulated, resembling reduced GapB. Despite their redox insensitivity, both B(R77A) and B(E362Q) mutants are notably prone to aggregate in presence of NAD. Based on structural data and current functional analysis, a model of GAPDH redox regulation is presented. Formation of a disulfide in the CTE induces a conformational change of the GAPDH with repositioning of the terminal amino acid Glu-362 in the proximity of Arg-77. The latter residue is thus distracted from binding the 2'-phosphate of NADP, with the final effect that the enzyme relaxes to a conformation leading to a slower NADPH-dependent catalytic activity.
منابع مشابه
Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the Calvin–Benson cycle
CP12 is a small, redox-sensitive protein, the most detailed understanding of which is the thioredoxin-mediated regulation of the Calvin-Benson cycle, where it facilitates the formation of a complex between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) in response to changes in light intensity. In most organisms, CP12 proteins are encoded by small multigene famil...
متن کاملMolecular mechanism of thioredoxin regulation in photosynthetic A2B2-glyceraldehyde-3-phosphate dehydrogenase.
Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a light-regulated, NAD(P)H-dependent enzyme involved in plant photosynthetic carbon reduction. Unlike lower photosynthetic organisms, which only contain A(4)-GAPDH, the major GAPDH isoform of land plants is made up of A and B subunits, the latter containing a C-terminal extension (CTE) with fundamental regulatory functions. Light-a...
متن کاملFunctional Divergence and Convergent Evolution in the Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenases of Diverse Eukaryotic Algae
BACKGROUND Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme of the glycolytic pathway, reversibly catalyzing the sixth step of glycolysis and concurrently reducing the coenzyme NAD(+) to NADH. In photosynthetic organisms a GAPDH paralog (Gap2 in Cyanobacteria, GapA in most photosynthetic eukaryotes) functions in the Calvin cycle, performing the reverse of the glycolytic reaction...
متن کاملComparative analysis of 126 cyanobacterial genomes reveals evidence of functional diversity among homologs of the redox-regulated CP12 protein.
CP12 is found almost universally among photosynthetic organisms, where it plays a key role in regulation of the Calvin cycle by forming a ternary complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase. Newly available genomic sequence data for the phylum Cyanobacteria reveals a heretofore unobserved diversity in cyanobacterial CP12 proteins. Cyanobacterial CP12 pr...
متن کاملMapping of the interaction site of CP12 with glyceraldehyde-3-phosphate dehydrogenase from Chlamydomonas reinhardtii. Functional consequences for glyceraldehyde-3-phosphate dehydrogenase.
The 8.5 kDa chloroplast protein CP12 is essential for assembly of the phosphoribulokinase/glyceraldehyde-3-phosphate dehydrogenase (GAPDH) complex from Chlamydomonas reinhardtii. After reduction of this complex with thioredoxin, phosphoribulokinase is released but CP12 remains tightly associated with GAPDH and downregulates its NADPH-dependent activity. We show that only incubation with reduced...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 138 4 شماره
صفحات -
تاریخ انتشار 2005