Evolution of leaf form in marsileaceous ferns: evidence for heterochrony.
نویسندگان
چکیده
Using an explicit phylogenetic framework, ontogenetic patterns of leaf form are compared among the three genera of marsileaceous ferns (Marsilea, Regnellidium, and Pilularia) with the outgroup Asplenium to address the hypothesis that heterochrony played a role in their evolution. We performed a Fourier analysis on a developmental sequence of leaves from individuals of these genera. Principal components analysis of the harmonic coefficients was used to characterize the ontogenetic trajectories of leaf form in a smaller dimensional space. Results of this study suggest that the "evolutionary juvenilization" observed in these leaf sequences is best described using a mixed model of heterochrony (accelerated growth rate and early termination at a simplified leaf form). The later stages of the ancestral, more complex, ontogenetic pattern were lost in Marsileaceae, giving rise to the simplified adult leaves of Marsilea, Regnellidium, and Pilularia. Life-history traits such as ephemeral and uncertain habitats, high reproductive rates, and accelerated maturation, which are typical for marsileaceous ferns, suggest that they may be "r strategists." The evidence for heterochrony presented here illustrates that it has resulted in profound ecological and morphological consequences for the entire life history of Marsileaceae.
منابع مشابه
Structure and Function of Spores in the Aquatic Heterosporous Fern Family Marsileaceae
Spores of the aquatic heterosporous fern family Marsileaceae differ markedly from spores of Salviniaceae, the only other family of heterosporous ferns and sister group to Marsileaceae, and from spores of all homosporous ferns. The marsileaceous outer spore wall (perine) is modified above the aperture into a structure, the acrolamella, and the perine and acrolamella are further modified into a r...
متن کاملHeterochronic genes in plant evolution and development
Evolution of morphology includes evolutionary shifts of developmental processes in space or in time. Heterochronic evolution is defined as a temporal shift. The concept of heterochrony has been very rewarding to investigators of both animal and plant developmental evolution, because it has strong explanatory power when trying to understand morphological diversity. While for animals, extensive l...
متن کاملThe evolution, morphology, and development of fern leaves
Leaves are lateral determinate structures formed in a predictable sequence (phyllotaxy) on the flanks of an indeterminate shoot apical meristem. The origin and evolution of leaves in vascular plants has been widely debated. Being the main conspicuous organ of nearly all vascular plants and often easy to recognize as such, it seems surprising that leaves have had multiple origins. For decades, m...
متن کاملPhylogeny of Marsileaceous Ferns and Relationships of the Fossil Hydropteris pinnata Reconsidered.
Recent phylogenetic studies have provided compelling evidence that confirms the once disputed hypothesis of monophyly for heterosporous leptosporangiate ferns (Marsileaceae and Salviniaceae). Hypotheses for relationships among the three genera of Marsileaceae (Marsilea, Regnellidium, and Pilularia), however, have continued to be in conflict. The phylogeny of Marsileaceae is investigated here us...
متن کاملGeometry, Allometry and Biomechanics of Fern Leaf Petioles: Their Significance for the Evolution of Functional and Ecological Diversity Within the Pteridaceae
Herbaceous plants rely on a combination of turgor, ground tissues and geometry for mechanical support of leaves and stems. Unlike most angiosperms however, ferns employ a sub-dermal layer of fibers, known as a hypodermal sterome, for support of their leaves. The sterome is nearly ubiquitous in ferns, but nothing is known about its role in leaf biomechanics. The goal of this research was to char...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 63 2 شماره
صفحات -
تاریخ انتشار 2009