Nanoscale Mechanical Characterisation of Amyloid Fibrils Discovered in a Natural Adhesive

نویسندگان

  • Anika S. Mostaert
  • Michael J. Higgins
  • Takeshi Fukuma
  • Fabio Rindi
  • Suzanne P. Jarvis
چکیده

Using the atomic force microscope, we have investigated the nanoscale mechanical response of the attachment adhesive of the terrestrial alga Prasiola linearis (Prasiolales, Chlorophyta). We were able to locate and extend highly ordered mechanical structures directly from the natural adhesive matrix of the living plant. The in vivo mechanical response of the structured biopolymer often displayed the repetitive sawtooth force-extension characteristics of a material exhibiting high mechanical strength at the molecular level. Mechanical and histological evidence leads us to propose a mechanism for mechanical strength in our sample based on amyloid fibrils. These proteinaceous, pleated beta-sheet complexes are usually associated with neurodegenerative diseases. However, we now conclude that the amyloid protein quaternary structures detected in our material should be considered as a possible generic mechanism for mechanical strength in natural adhesives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-folding and aggregation of amyloid nanofibrils.

Amyloids are highly organized protein filaments, rich in β-sheet secondary structures that self-assemble to form dense plaques in brain tissues affected by severe neurodegenerative disorders (e.g. Alzheimer's Disease). Identified as natural functional materials in bacteria, in addition to their remarkable mechanical properties, amyloids have also been proposed as a platform for novel biomateria...

متن کامل

Mechanical properties of amyloid-like fibrils defined by secondary structures.

Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morpho...

متن کامل

Anti-amyloidogenic and disaggregating effects of Salvia officinalis in vitro: a strategy to reduce the insulin amyloid fibrils due to repeated subcutaneous injections in diabetic patients

Background: Recently, there has been growing efforts to elucidate the molecular mechanism of amyloid formation and investigating effective compounds for inhibiting of amyloid structures. Investigation of the fibrillation process through its induction and inhibition using specific compounds such as aromatic derivatives provide useful information for stabilizing the protein structure. In the pres...

متن کامل

Nanoscale Flexibility Parameters of Alzheimer Amyloid Fibrils Determined by Electron Cryo-Microscopy**

Amyloid fibrils are fibrillar polypeptide aggregates consisting of a cross-b structure. The rigidity and stability of these fibrils contributes to their natural pathogenicity or functionality and has suggested potential applications in bionanotechnology. Yet, amyloid fibrils can occur in different morphologies with unique mechanical and flexible characteristics. Herein, we use electron cryo-mic...

متن کامل

Mechanical Deformation Mechanisms and Properties of Prion Fibrils Probed by Atomistic Simulations

Prion fibrils, which are a hallmark for neurodegenerative diseases, have recently been found to exhibit the structural diversity that governs disease pathology. Despite our recent finding concerning the role of the disease-specific structure of prion fibrils in determining their elastic properties, the mechanical deformation mechanisms and fracture properties of prion fibrils depending on their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Biological Physics

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2006