Source Resistance: The Efficiency Killer in DC-DC Converter Circuits - AN3166
ثبت نشده
چکیده
DC-DC converters, common in battery-driven, portable, and other high-efficiency systems, can deliver efficiencies greater than 95% while boosting, reducing, or inverting supply voltages. Resistance in the power source is one of the most important factors that can limit efficiency. This application note describes the effects of source resistance, how to calculate efficiency, real-world considerations, design considerations, and shows a real-world example. DC-DC converters are commonly used in battery-operated equipment and other power-conserving applications. Like a linear regulator, the DC-DC converter can regulate to a lower voltage. Unlike linear regulators, however, the DC-DC converter can boost an input voltage or invert it to create a negative voltage. As an added bonus, the DC-DC converter boasts efficiencies greater than 95% under optimum conditions. However, this efficiency is limited by dissipative components. The main cause is resistance in the power source. Losses due to source resistance can lower the efficiency by 10% or more, exclusive of loss in the DC-DC converter! If the converter has adequate input voltage, its output will be normal and there may be no obvious indication that power is being wasted. Fortunately, testing the input efficiency is a simple matter (see the Source section). A large source resistance can cause other, less obvious effects. In extreme cases, the converter's input can become bistable, or its output can decrease under maximum load conditions. Bistability means that the converter exhibits two stable input conditions, each with its own efficiency. The converter output is normal, but system efficiency may be drastically affected (see How to Avoid Bistability). Should this problem be solved simply by minimizing the source resistance? No, because the practical limits and cost/benefit trade-offs posed by the system may suggest other solutions. A prudent selection of power-supply input voltage, for example, can considerably minimize the need for low source resistance. Higher input voltage for a DC-DC converter limits the input current requirement, which in turn lessens the need for a low source resistance. From a systems standpoint, the conversion of 5V to 2.5V may be far more efficient than the conversion of 3.3V to 2.5V. Each option must be evaluated. The goal of this article is to provide analytic and intuitive tools for simplifying the evaluation task.
منابع مشابه
Source Resistance: The Efficiency Killer in DC-DC Converter Circuits - Application Note - Maxim
DC-DC converters, common in battery-driven, portable, and other high-efficiency systems, can deliver efficiencies greater than 95% while boosting, reducing, or inverting supply voltages. Resistance in the power source is one of the most important factors that can limit efficiency. This application note describes the effects of source resistance, how to calculate efficiency, real-world considera...
متن کاملA New ZVZCS Isolated Dual Series Resonant DC-DC Converter with EMC Considerations
A novel ZVZCS isolated dual series-resonant active-clamp dc–dc converter is proposed to obtain high efficiency. The proposed converter employs an active-clamp technique, while a series-resonant scheme controls the output voltage with the complementary pulse width modulation controller. The active-clamp circuit serves to recycle the energy stored in the leakage inductance or the magnetizing ...
متن کاملA New Structure of Buck-Boost Z-Source Converter Based on Z-H Converter
In this paper, a new structure for buck-boost Z-source converter based on Z-H topology is proposed. The proposed converter consists of two LC networks similar to the conventional Z-source and Z-H converters. One of the characteristics of the proposed structure is that, without any changing in its’ power circuit, it can be used in different conversions such as dc/dc, dc/ac and ac/ac. This unique...
متن کاملAnalysis of Switched Inductor Three-level DC/DC Converter
A non-isolated DC/DC converter with high transfer gain is proposed in this paper. The presented converter consists of the switched inductor and three-level converters. The DC/DC power converter is three-level boost converter to convert the output voltage of the DC source into two voltage sources. The main advantages of DC/DC converter are using low voltage semiconductors and high gain voltage. ...
متن کاملSliding-Mode Control of the DC-DC Ćuk Converter in Discontinuous Conduction Mode
In this paper, a novel approach for two-loop control of the DC-DC Ćuk converter in discontinuousconduction mode is presented using a sliding mode controller. The proposed controller can regulatethe output of the converter in a wide range of input voltage and load resistance. Controllerparameters are selected using PSO algorithms. In order to verify the accuracy and efficiency of thedeveloped sl...
متن کامل