The Evolution of Self-Fertile Hermaphroditism: The Fog Is Clearing

نویسنده

  • Michael Bunce
چکیده

0001 The recent discovery of a Hobbit-like hominid on the Indonesian island of Flores was startling in some respects—its rather modern existence, for one—but it represents a classic case of Darwinian evolution. For reasons that are not entirely clear, when animals make their way to isolated islands, they tend to evolve relatively quickly toward an outsized or pint-sized version of their mainland counterpart. Following this evolutionary script, the Flores woman, presumably a downsized version of Homo erectus, appears to have shared her island home with dwarf elephants and giant rats. Perhaps the most famous example of an island giant—and, sadly, of species extinction—is the dodo, once found on the Indian Ocean island of Mauritius. When the dodo’s ancestor (thought to be a migratory pigeon) settled on this island with abundant food, no competition from terrestrial mammals, and no predators, it could survive without fl ying, and thus was freed from the energetic and size constraints of fl ight. New Zealand also had avian giants, now extinct, including the fl ightless moa, an ostrich-like bird, and Haast’s eagle (Harpagornis moorei), which had a wingspan up to 3 meters. Though Haast’s eagle could fl y—and presumably used its wings to launch brutal attacks on the hapless moa—its body mass (10–14 kilograms) pushed the limits for self-propelled fl ight. As extreme evolutionary examples, these island birds can offer insights into the forces and events shaping evolutionary change. In a new study, Michael Bunce et al. compared ancient mitochondrial DNA extracted from Haast’s eagle bones with DNA sequences of 16 living eagle species to better characterize the evolutionary history of the extinct giant raptor. Their results suggest the extinct raptor underwent a rapid evolutionary transformation that belies its kinship to some of the world’s smallest eagle species. The authors characterized the rates of sequence evolution within mitochondrial DNA to establish the evolutionary relationships between the different eagle species. Their analysis places Haast’s eagle in the same evolutionary lineage as a group of small eagle species in the genus Hieraaetus. Surprisingly, the genetic distance separating the giant eagle and its more diminutive Hieraaetus cousins from their last common ancestor is relatively small. Without the fossils to directly determine divergence times, Bunce et al. relied on molecular dating techniques that use the rate of sequence evolution in the genes studied to establish the relative evolutionary ages of the eagles. Proposing a divergence date of roughly 0.7–1.8 million years ago, the authors acknowledge that while this is the “best available approximation of the ‘true’ date,” additional molecular data could help refi ne the estimate. Whatever the date of divergence, the extinct giant eagle is clearly an anomaly among the eagles studied here. The increase in body size—by at least an order of magnitude in less than 2 million years—is particularly remarkable, Bunce et al. argue, since it occurred in a species still capable of fl ight. The absence of mammalian competitors facilitated the evolution of much larger eagles and owls on Cuba and may have likewise precipitated the rapid morphological shift seen here. Haast’s eagle, the authors write, “represents an extreme example of how freedom from competition on island ecosystems can rapidly infl uence morphological adaptation and speciation.” Given its similarity to the smaller Hieraaetus species, the authors recommend reclassifying the New Zealand giant as Hieraaetus moorei. This study shows how quickly morphological changes can occur in vertebrate lineages within island ecosystems. Could it be that anthropologists might some day uncover evidence of a giant version of the Flores woman?

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fog-2 and the Evolution of Self-Fertile Hermaphroditism in Caenorhabditis

Somatic and germline sex determination pathways have diverged significantly in animals, making comparisons between taxa difficult. To overcome this difficulty, we compared the genes in the germline sex determination pathways of Caenorhabditis elegans and C. briggsae, two Caenorhabditis species with similar reproductive systems and sequenced genomes. We demonstrate that C. briggsae has orthologs...

متن کامل

Independent recruitments of a translational regulator in the evolution of self-fertile nematodes.

Pleiotropic developmental regulators have been repeatedly linked to the evolution of anatomical novelties. Known mechanisms include cis-regulatory DNA changes that alter regulator transcription patterns or modify target-gene linkages. Here, we examine the role of another form of regulation, translational control, in the repeated evolution of self-fertile hermaphroditism in Caenorhabditis nemato...

متن کامل

Genetic flexibility in the convergent evolution of hermaphroditism in Caenorhabditis nematodes.

The self-fertile hermaphrodites of C. elegans and C. briggsae evolved from female ancestors by acquiring limited spermatogenesis. Initiation of C. elegans hermaphrodite spermatogenesis requires germline translational repression of the female-promoting gene tra-2, which allows derepression of the three male-promoting fem genes. Cessation of hermaphrodite spermatogenesis requires fem-3 translatio...

متن کامل

Sex change by gene conversion in a Caenorhabditis elegans fog-2 mutant.

Caenorhabditis elegans primarily reproduces as a hermaphrodite. Independent gene conversion events in mutant obligately outcrossing populations of C. elegans [fog-2(lf)] spontaneously repaired the loss-of-function mutation in the fog-2 locus, thereby reestablishing hermaphroditism as the primary means of reproduction for the populations.

متن کامل

A sensitized genetic background reveals evolution near the terminus of the Caenorhabditis germline sex determination pathway.

Caenorhabditis elegans and Caenorhabditis briggsae are both self-fertile hermaphroditic nematodes that evolved independently from male/female ancestors. In C. elegans, FEM-1, FEM-2, and FEM-3 specify male fates by promoting proteolysis of the male-repressing transcription factor, TRA-1. Phenotypes of tra-1 and fem mutants are consistent with this simple linear model in the soma, but not in the ...

متن کامل

Convergent Evolution: Regulatory Lightning Strikes Twice

Nematodes of the genus Caenorhabditis have evolved self-fertile hermaphrodites several times. Like Caenorhabditis elegans, C. briggsae has also recruited an F-box protein to regulate the sex determination gene tra-2 during the evolution of self-fertilization. Evolutionary biologists suffer from the lack of time machines. Until we get one, the details of how many adaptations evolved remain elusi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Biology

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2005