H-minimal Lagrangian fibrations in Kähler manifolds and minimal Lagrangian vanishing tori in Kähler-Einstein manifolds

نویسنده

  • Wei-Dong Ruan
چکیده

H-minimal Lagrangian submanifolds in general Kähler manifolds generalize special Lagrangian submanifolds in Calabi-Yau manifolds. In this paper we will use the deformation theory of H-minimal Lagrangian submanifolds in Kähler manifolds to construct minimal Lagrangian torus in certain Kähler-Einstein manifolds with negative first Chern class.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Lagrangian submanifolds and fibrations in Kähler manifolds

In this paper we introduce harmonic Lagrangian submanifolds in general Kähler manifolds, which generalize special Lagrangian submanifolds in Calabi-Yau manifolds. We will use the deformation theory of harmonic Lagrangian submanifolds in Kähler manifolds to construct minimal Lagrangian torus in certain Kähler-Einstein manifolds with negative first Chern class.

متن کامل

Spin geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds

From the existence of parallel spinor fields on CalabiYau, hyper-Kähler or complex flat manifolds, we deduce the existence of harmonic differential forms of different degrees on their minimal Lagrangian submanifolds. In particular, when the submanifolds are compact, we obtain sharp estimates on their Betti numbers. When the ambient manifold is Kähler-Einstein with positive scalar curvature, and...

متن کامل

Polysymplectic spaces, s-Kähler manifolds and Lagrangian Fibrations

In this paper we begin the study of polysymplectic manifolds, and of their relationship with PDE’s. This notion provides a generalization of symplectic manifolds which is very well suited for the geometric study of PDE’s with values in a smooth manifold. Some of the standard tools of analytical mechanics, such as the Legendre transformation and Hamilton’s equations, are shown to generalize to t...

متن کامل

Minimal Lagrangian tori in Kahler-Einstein manifolds

In this paper we use structure preserving torus actions on KahlerEinstein manifolds to construct minimal Lagrangian submanifolds. Our main result is: Let N be a Kahler-Einstein manifold with positive scalar curvature with an effective T -action. Then precisely one regular orbit L of the T -action is a minimal Lagrangian submanifold of N . Moreover there is an (n− 1)-torus T n−1 ⊂ T n and a sequ...

متن کامل

Spinc geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds

From the existence of parallel spinor fields on Calabi-Yau, hyper-Kähler or complex flat manifolds, we deduce the existence of harmonic differential forms of different degrees on their minimal Lagrangian submanifolds. In particular, when the submanifolds are compact, we obtain sharp estimates on their Betti numbers which generalize those obtained by Smoczyk in [49]. When the ambient manifold is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008