Development of a High-resolution Melting Analysis Method Based on SYBR Green-I for rs7216389 Locus Genotyping in Asthmatic Child Patients
نویسندگان
چکیده
BACKGROUND Asthma is caused by the combination of different factors. Current concepts of asthma pathogenesis emphasize on gene-environment interactions. Mega-genome scanning projects revealed that different Single Nucleotide Polymorphisms (SNPs) are related to asthma susceptibility. rs7216389-T is one of them that is related to childhood asthma and its effect on childhood asthma severity has been proved in different nations, however no study has been performed in Eastern Mediterranean and Middle East countries yet. METHODS To perform population genetic studies, a rapid and high-throughput screening method is necessary. High-resolution melting analysis is a rapid, powerful and accurate method, which is suitable for this type of studies. Therefore, it has been decided to develop a high-resolution melting method for rs7216389 locus genotyping in Iranian asthmatic children. In the current study, a high-resolution melting analysis method based on SYBR Green-I was developed to check the frequency of rs7216389-T mutation in Iranian asthmatic children for the first time. RESULTS Second and third classes of intercalating dyes are commonly used for high-resolution melting method. However, in this study, SYBR Green-I was used for rs7216389 locus genotyping for the first time. Our results for 60 samples showed that SYBR Green-I has good efficacy for rs7216389 locus genotyping through high-resolution melting method in comparison with PCR-RFLP and sequencing. CONCLUSION Comparison of our results based on HRM analysis with PCR-RFLP showed that our developed method is rapid, accurate, high-throughput and economic to study the rs7216389 locus in asthmatic children and it is applicable for other similar population genetic studies.
منابع مشابه
Development of SYBR Green I Based Real-Time RT-PCR Assay for Specific Detection of Watermelon silver mottle Virus
Background: Watermelon silver mottle virus (WSMoV), which belongs to the genus Tospovirus, causes significant loss in Cucurbitaceae plants. Objectives: Development of a highly sensitive and reliable detection method for WSMoV. Materials and Methods: Recombinant plasmids for targeting the sequence of nucleocapsid protein gene of WSMoV were constructed. SYBR Green I real-time PCR was established...
متن کاملAmplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes.
BACKGROUND DNA melting analysis for genotyping and mutation scanning of PCR products by use of high-resolution instruments with special "saturation" dyes has recently been reported. The comparative performance of other instruments and dyes has not been evaluated. METHODS A 110-bp fragment of the beta-globin gene including the sickle cell anemia locus (A17T) was amplified by PCR in the presenc...
متن کاملDevelopment of a High-Resolution Melting Method for Screening R188H Polymorphism in XRCC2 Gene
Background: The High Resolution Melting (HRM) method is a new scanning method for detecting unknown changes in DNA and its advantages have persuaded researchers to recruit it as a screening method. Objectives: Here, we developed a HRM method to screen R188H SNP (rs3218536) of XRCC2 and compared the results with a well known PCR-RFLP technique. Materials and Methods: Genomic ...
متن کاملHBB FSC 36-37 (-T) Gene Mutation Detection in Carriers of Thalassemia Minor Using High Resolution Melting Analysis
Beta-thalassemia is one of the most common autosomal recessive disorders in the world population resulting from over 200 different mutations of HBB gene. Beta-thalassemias are caused by point mutations or, more rarely, deletions in the HBB gene leading to reduced (beta+) or absent (beta0) synthesis of the beta chains of hemoglobin (Hb). High-resolution melting of polymerase chain reaction (PCR)...
متن کاملMelting curve analysis of SNPs (McSNP): a gel-free and inexpensive approach for SNP genotyping.
High-throughput methods for assaying DNA variation require two important steps: (i) discriminating the variation and (ii) detecting the signal. In this report, we describe a novel SNP genotyping method that we refer to as melting curve analysis of SNPs (McSNP). McSNP combines a classic approach for discriminating alleles, restriction enzyme digestion, with a more recent method for detecting DNA...
متن کامل