Region Based a-Semantics Graph Driven Image Retrieval
نویسندگان
چکیده
This work is about content based image database retrieval, focusing on developing a classification based methodology to address semantics-intensive image retrieval. With Self Organization Map based image feature grouping, a visual dictionary is created for color, texture, and shape feature attributes, respectively. Labeling each training image with the keywords in the visual dictionary, a classification tree is built. Based on the statistical properties of the feature space we define a structure, called α-Semantics Graph, to discover the hidden semantic relationships among the semantic repositories embodied in the image database. With the α-Semantics Graph, each semantic repository is modeled as a unique fuzzy set to explicitly address the semantic uncertainty and the semantic overlap existing among the repositories in the feature space. A retrieval algorithm combining the built classification tree with the developed fuzzy set models to deliver semantically relevant image retrieval is provided. The experimental evaluations have demonstrated that the proposed approach models the semantic relationships effectively and outperforms a state-of-the-art content based image retrieval system in the literature both in effectiveness and efficiency.
منابع مشابه
بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملSemantics-sensitive Retrieval for Digital Picture Libraries
We present SIMPLIcity (Semantics-sensitive Integrated Matching for Picture LIbraries), an image database retrieval system, which uses high-level semantics classification and integrated region matching based upon image segmentation. The SIMPLIcity system represents an image by a set of regions, roughly corresponding to objects, which are characterized by color, texture, shape, and location. Base...
متن کاملSIMPLIcity: Semantics-sensitive Integrated Matching for Picture Libraries
ÐThe need for efficient content-based image retrieval has increased tremendously in many application areas such as biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semanticssensitive Integrated Matching for Picture LIbraries), an image retrieval system, which uses semantics classification methods, a wavelet-based approach for fe...
متن کاملSemantics-Based Image Retrieval by Region Saliency
We propose a new approach for semantics-based image retrieval. We use color-texture classification to generate the codebook which is used to segment images into regions. The content of a region is characterized by its self-saliency and the lower-level features of the region, including color and texture. The context of regions in an image describes their relationships, which are related to their...
متن کاملSemantics Retrieval by Content and Context of Image Regions
We propose a novel approach for semantics retrieval from images in multimedia databases. In our approach, we use color-texture classification to generate the codebook which is used to segment images into regions. The content of a region describes the lower-level features of the region, including color and texture. The context of regions in an image describes their relationships in the image. Th...
متن کامل