Recent Progress in Alegra Development and Application to Ballistic Impacts1
نویسندگان
چکیده
ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics being developed by the Computational Physics Research and Development Department at Sandia National Laboratories. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes. With the ALE algorithm, the mesh can be stationary (Eulerian) with the material flowing through the mesh, the mesh can move with the material (Lagrangian) so there is no flow between elements, or the mesh motion can be entirely independent of the material motion (Arbitrary). All three mesh types can coexist in the same problem, and any mesh may change its type during the calculation. In this paper we summarize several key capabilities that have recently been added to the code or are currently being implemented. As a demonstration of the capabilities of ALEGRA, we have applied it to the experimental data taken by Silsby.
منابع مشابه
Recent Progress in Alegra Development and Application to Ballistic Impacts~
ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics being developed by the Computational Physics Research and Development Department at Sandia +tionat Laboratories. It combines the features of modem Eulerian shock codes, such as CTH, with modem Lagrangian structural analysis codes. With the ALE algorithm, the mesh can be stationary (Eulerian) with the materia...
متن کاملCarbon membranes for gas separation processes: Recent progress and future perspective
Carbon membrane can be produced using a wide variety of polymer precursor materials via heat treatment process. A general concept route of precursor selection-preparation-modification-performance analysis platform for the carbon membrane has been proposed to promote the development of carbon membrane material for a wide range of application. The current review considers the recent progress of c...
متن کاملBallistic Performance of Hybrid Armor with Ceramic Inserts and Polymeric Matrix for Different Threat Levels (TECHNICAL NOTE)
Ceramic materials due to their high compressive strength and hardness have been one of prime candidates in armor design in particular when high level threads (impact velocity above 600m/s) are involved. The aim of this work is to investigate ballistic impact resistance potential for a target plate with novel ceramic inserts as against ceramic tiles. Two size 98% alumina (AL2O3) base ceramic i...
متن کاملApplication of Neural Space Mapping for Modeling Ballistic Carbon Nanotube Transistors
In this paper, using the neural space mapping (NSM) concept, we present a SPICE-compatible modeling technique to modify the conventional MOSFET equations, to be suitable for ballistic carbon nanotube transistors (CNTTs). We used the NSM concept in order to correct conventional MOSFET equations so that they could be used for carbon nanotube transistors. To demonstrate the accuracy of our mod...
متن کاملApplication of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review
This paper gives a comprehensive review about the most recent progress in graphene and graphene oxide based electrochemical sensors and biosensors. Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass product...
متن کامل