A Unified Neural Network Approach for Estimating Travel Time and Distance for a Taxi Trip
نویسندگان
چکیده
In building intelligent transportation systems such as taxi or rideshare services, accurate prediction of travel time and distance is crucial for customer experience and resource management. Using the NYC taxi dataset, which contains taxi trips data collected from GPS-enabled taxis [1], this paper investigates the use of deep neural networks to jointly predict taxi trip time and distance. We propose a model, called ST-NN (Spatio-Temporal Neural Network), which first predicts the travel distance between an origin and a destination GPS coordinate, then combines this prediction with the time of day to predict the travel time. The beauty of ST-NN is that it uses only the raw trips data without requiring further feature engineering and provides a joint estimate of travel time and distance. We compare the performance of ST-NN to that of state-of-the-art travel time estimation methods, and we observe that the proposed approach generalizes better than state-of-the-art methods. We show that ST-NN approach significantly reduces the mean absolute error for both predicted travel time and distance, about 17% for travel time prediction. We also observe that the proposed approach is more robust to outliers present in the dataset by testing the performance of ST-NN on the datasets with and without outliers.
منابع مشابه
Town trip forecasting based on data mining techniques
In this paper, a data mining approach is proposed for duration prediction of the town trips (travel time) in New York City. In this regard, at first, two novel approaches, including a mathematical and a statistical approach, are proposed for grouping categorical variables with a huge number of levels. The proposed approaches work based on the cost matrix generated by repetitive post-hoc tests f...
متن کاملSolving the Ride-Sharing Problem with Non-Homogeneous Vehicles by Using an Improved Genetic Algorithm with Innovative Mutation Operators and Local Search Methods
An increase in the number of vehicles in cities leads to several problems, including air pollution, noise pollution, and congestion. To overcome these problems, we need to use new urban management methods, such as using intelligent transportation systems like ride-sharing systems. The purpose of this study is to create and implement an improved genetic algorithms model for ride-sharing with non...
متن کاملAn Alternative Approach to Centroids and Connectors Pattern: Random Intra-Zonal Travel Time
In traditional traffic assignment procedure, each traffic analysis zone is represented by one point in its geometric center which is connected to the network by several connectors. Results of studies show that different connector patterns would result up to 10% change in estimated volume and up to 20% change in total travel time. Also the different patterns of connectors can change the priority...
متن کاملRouting Vehicle of Urban Waste Collection Utilities GIS
Municipal solid waste collection is expensive and, in some cities, 46–85% of their whole waste management expenses are used for waste collection and transportation. Rapid urbanization and every day human actions generate a large amount of waste from residential, commercial, or industrial extents all over the world. Waste collection optimization can decrease the waste collection budget and envir...
متن کامل(Blue) Taxi Destination and Trip Time Prediction from Partial Trajectories
Real-time estimation of destination and travel time for taxis is of great importance for existing electronic dispatch systems. We present an approach based on trip matching and ensemble learning, in which we leverage the patterns observed in a dataset of roughly 1.7 million taxi journeys to predict the corresponding final destination and travel time for ongoing taxi trips, as a solution for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.04350 شماره
صفحات -
تاریخ انتشار 2017