Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.
نویسنده
چکیده
In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.
منابع مشابه
Noninvasive cross-sectional observation of three-dimensional cell sheet-tissue-fabrication by optical coherence tomography
Cell sheet engineering allows investigators/clinicians to prepare cell-dense three-dimensional (3-D) tissues, and various clinical trials with these fabricated tissues have already been performed for regenerating damaged tissues. Cell sheets are easily manipulated and 3-D tissues can be rapidly fabricated by layering the cell sheets. This study used optical coherence tomography (OCT) to noninva...
متن کاملRole of Stem Cells in Cardiac Cell Therapy and Tissue Engineering
Background: In spite of promising results of conventional treatments for myocardial infarction, including medications, stent implantation, and coronary artery bypass grafting, the disease and its complications, especially heart failure, are highly prevalent because these methods could not reverse the cell loss, which is the main problem. Currently, heart transplantation, as the last option f...
متن کاملHepatocyte Transplantation: Cell Sheet Technology for Liver Cell Transplantation
PURPOSE OF REVIEW We will review the recent developments of cell sheet technology as a feasible tissue engineering approach. Specifically, we will focus on the technological advancement for engineering functional liver tissue using cell sheet technology, and the associated therapeutic effect of cell sheets for liver diseases, highlighting hemophilia. RECENT FINDINGS Cell-based therapies using...
متن کاملLong-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets.
Recently researchers have attempted to bioengineer three-dimensional (3-D) myocardial tissues using cultured cells in order to repair damaged hearts. In contrast to the conventional approach of seeding cells onto 3-D biodegradable scaffolds, we have explored a novel technology called cell sheet engineering, which layers cell sheets to construct functional tissue grafts. In this study, in vivo s...
متن کاملRegenerative Therapies Using Cell Sheet-Based Tissue Engineering for Cardiac Disease
At present, cardiac diseases are a major cause of morbidity and mortality in the world. Recently, a cell-based regenerative medicine has appeared as one of the most potential and promising therapies for improving cardiac diseases. As a new generational cell-based regenerative therapy, tissue engineering is focused. Our laboratory has originally developed cell sheet-based scaffold-free tissue en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation journal : official journal of the Japanese Circulation Society
دوره 78 11 شماره
صفحات -
تاریخ انتشار 2014