ar X iv : 0 90 3 . 49 89 v 4 [ m at h . FA ] 1 9 M ay 2 00 9 GABOR FIELDS AND WAVELET SETS FOR THE HEISENBERG GROUP

نویسنده

  • AZITA MAYELI
چکیده

We study singly-generated wavelet systems on R that are naturally associated with rank-one wavelet systems on the Heisenberg group N . We prove a necessary condition on the generator in order that any such system be a Parseval frame. Given a suitable subset I of the dual of N , we give an explicit construction for Parseval frame wavelets that are associated with I . We say that g ∈ L(I×R) is Gabor field over I if, for a.e. λ ∈ I , |λ|g(λ, ·) is the Gabor generator of a Parseval frame for L(R), and that I is a Heisenberg wavelet set if every Gabor field over I is a Parseval frame (mother-)wavelet for L(R). We then show that I is a Heisenberg wavelet set if and only if I is both translation congruent with a subset of the unit interval and dilation congruent with the Shannon set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 03 05 16 7 v 1 2 0 M ay 2 00 3 Wavelet based regularization for Euclidean field theory ∗

It is shown that Euclidean field theory with polynomial interaction , can be regularized using the wavelet representation of the fields. The connections between wavelet based regularization and stochastic quantization are considered.

متن کامل

ar X iv : 0 90 3 . 11 54 v 1 [ he p - la t ] 6 M ar 2 00 9 Universality of the N f = 2 Running Coupling in the Schödinger Functional Scheme

We investigate universality of the N f = 2 running coupling in the Schödinger functional scheme, by calculating the step scaling function in lattice QCD with the renormalization group (RG) improved gauge action at both weak(u = 0.9796) and strong(u = 3.3340) couplings, where u = ḡSF with ḡSF being the running coupling in this scheme. In our main calculations, we use the treelevel value for O(a)...

متن کامل

ar X iv : h ep - t h / 03 11 04 8 v 1 6 N ov 2 00 3 Wavelet based regularization for Euclidean field theory and stochastic quantization

It is shown that Euclidean field theory with polynomial interaction, can be regularized using the wavelet representation of the fields. The connections between wavelet based regularization and stochastic quantization are considered with φ 3 field theory taken as an example.

متن کامل

ar X iv : 0 80 6 . 17 25 v 1 [ m at h . ST ] 1 0 Ju n 20 08 LINEAR FRACTIONAL STABLE SHEETS : WAVELET EXPANSION AND SAMPLE PATH PROPERTIES

In this paper we give a detailed description of the random wavelet series representation of real-valued linear fractional stable sheet introduced in [2]. By using this representation, in the case where the sample paths are continuous, an anisotropic uniform and quasi-optimal modulus of continuity of these paths is obtained as well as an upper bound for their behavior at infinity and around the ...

متن کامل

ar X iv : m at h - ph / 0 10 60 14 v 1 1 8 Ju n 20 01 Plancherel Inversion as Unified Approach to Wavelet Transforms and Wigner Functions

We demonstrate that the Plancherel transform for Type-I groups provides one with a natural, unified perspective for the generalized continuous wavelet transform, on the one hand, and for a class of Wigner functions, on the other. The wavelet transform of a signal is an L2-function on an appropriately chosen group while the Wigner function is defined on a coadjoint orbit of the group and serves ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009