Backscattering modeling of wheat using vector radiative transfer theory
نویسندگان
چکیده
A microwave backscattering model of winter wheat based on the vector radiative transfer theory has been established. The model focused on the distribution of wheat ears that are directly related to the yield. In addition, characteristics of the wheat growth have been adequately considered. Compared to the measured values, the model effectively simulated the microwave backscattering characteristics of winter wheat. Intercomparison of the winter wheat model and modified Michigan Microwave Canopy Scattering (MIMICS) model using experimental data shows that the winter wheat model had better cross-polarized simulation results than the modified MIMICS model did. This improvement was attributed to the special attention paid to the cross-polarization after the booting stage. After booting, wheat ear started to appear and grow in size. Wheat ear contributed greatly to cross-polarized backscatter. The inclusion of the ear as one of the model components was significant in modeling the observed crosspolarized backscattering. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.9.097093]
منابع مشابه
Maxwell’s equations, radiative transfer, and coherent backscattering: A general perspective
This tutorial paper provides a general overview of the hierarchy of problems involving electromagnetic scattering by particles and clarifies the place of the radiative transfer theory and the theory of coherent backscattering in the context of classical electromagnetics. The self-consistent microphysical approach to radiative transfer is compared with the traditional phenomenological treatment....
متن کاملModeling microwave interactions with crops and comparison with ERS-2 SAR observations
I. ABSTRACT A comprehensive multi-layer second order radiative transfer model, driven entirely by intensive field observations, is used to show that second order terms contribute at most 0.5 dB to the backscattering coefficent at all polarisations from wheat and barley throughout the growing season, and 1 dB to the copolar response of oilseed rape. Under these circumstances, an equivalent integ...
متن کاملHeat Transfer Study of Convective-Radiative Fin under the influence of Magnetic Field using Legendre Wavelet Collocation Method
The development and production of high performance equipment necessitate the use of passive cooling technology. In this paper, heat transfer study of convective-radiative straight fin with temperature-dependent thermal conductivity under the influence of magnetic field is carried out using Legendre wavelet collocation method. The numerical solution is used to investigate the effects of magnetic...
متن کاملRadiative heat transfer: many-body effects
Heat transfer by electromagnetic radiation is one of the common methods of energy transfer between objects. Using the fluctuation-dissipation theorem, we have studied the effect of particle arrangement in the transmission of radiative heat in many-body systems. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer is studied and the re...
متن کاملANALYSIS OF COMBINED CONDUCTION AND RADIATION HEAT TRANSFER IN A RECTANGULAR FURNACE INCLUDING TWO FLAMES
Abstract: The present study deals the theoretical modeling aspects of coupled conductive and radiative heat transfer in the presence of absorbing, emitting and scattering gray medium within two-dimensional square furnace including two flames. The gray radiative medium is bounded by isothermal walls which are considered to be opaque, diffuse and gray. The well known discrete ordinate method (DOM...
متن کامل