Basis Set Convergence of the Post-CCSD(T) Contribution to Noncovalent Interaction Energies.

نویسندگان

  • Daniel G A Smith
  • Piotr Jankowski
  • Michał Slawik
  • Henryk A Witek
  • Konrad Patkowski
چکیده

We investigated the basis set convergence of high-order coupled-cluster interaction energy contributions for 21 small weakly bound complexes. By performing CCSDT(Q) calculations in at least the aug-cc-pVTZ basis set, and CCSDT calculations in at least aug-cc-pVQZ (aug-cc-pVTZ for one system), we found the convergence to be quite slow. In particular, the 6-31G*(0.25) and 6-31G**(0.25,0.15) bases advocated by Hobza et al. (J. Chem. Theory Comput. 2013, 9, 2151; ibid. 2013, 9, 3420) are unsuitable for the post-CCSD(T) effects, with average errors for the CCSDT(Q)-CCSD(T) interaction energy contribution of about 80% for 6-31G**(0.25,0.15) and 110% for 6-31G*(0.25). Upgrading the basis set to aug-cc-pVDZ reduces the average error to about 35% and extremely demanding CCSDT(Q)/aug-cc-pVTZ calculations are necessary for further improvement in accuracy. An error cancellation between basis set incompleteness effects at the CCSDT-CCSD(T) and CCSDT(Q)-CCSDT levels occurs for most (but not all) complexes, making it unproductive to carry out CCSDT calculations in a larger basis set than the more demanding CCSDT(Q) calculations. We also found that the frozen natural orbital approximation at the CCSDT and CCSDT(Q) levels works well only if the thresholds for discarding least occupied natural orbitals are very tight (significantly tighter than the thresholds recommended for molecular correlation energies in the original work of Rolik and Kállay, J. Chem. Phys. 2011, 134, 124111), making the performance gains quite limited. The interaction energy contributions through CCSDT(Q) are both a necessity and a bottleneck in the construction of top-accuracy interaction potentials and further improvements in the efficiency of high-order coupled-cluster calculations will be of great help.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benchmark interaction energies for biologically relevant noncovalent complexes containing divalent sulfur.

Molecules containing divalent sulfur can participate in significant noncovalent interactions. Computing accurate noncovalent interaction energies using ab initio quantum chemical methods requires a proper description of electron correlation effects. Coupled-cluster theory with single and double substitutions and perturbative triple substitutions, CCSD(T), using extrapolation to the complete bas...

متن کامل

Evaluation of composite schemes for CCSDT(Q) calculations of interaction energies of noncovalent complexes.

Recently, it has become possible to apply higher-order coupled-cluster methods to polyatomic systems including molecular noncovalent complexes. Due to the steep scaling of the complexity of these calculations, the size of the basis set becomes a critical factor and larger systems can be calculated only in small basis sets. To obtain the most accurate results, it is necessary to use composite sc...

متن کامل

The S66x8 benchmark for noncovalent interactions revisited: explicitly correlated ab initio methods and density functional theory.

The S66x8 dataset for noncovalent interactions of biochemical relevance has been re-examined by means of MP2-F12 and CCSD(F12*)(T) methods. We deem our revised benchmark data to be reliable to about 0.05 kcal mol(-1) RMS. Most levels of DFT perform quite poorly in the absence of dispersion corrections: somewhat surprisingly, that is even the case for the double hybrids and for dRPA75. Analysis ...

متن کامل

A systematic CCSD(T) study of long-range and noncovalent interactions between benzene and a series of first- and second-row hydrides and rare gas atoms.

Binding energies, potential energy curves, and equilibrium intermonomer distances describing the interaction between benzene and a series of first- and second-row hydrides and rare gas atoms are calculated using coupled-cluster theory with single, double, and perturbative triple excitations (CCSD(T)) in conjunction with a large augmented quadruple-zeta basis set (aug-cc-pVQZ). These benchmark r...

متن کامل

Accurate Treatment of Large Supramolecular Complexes by Double-Hybrid Density Functionals Coupled with Nonlocal van der Waals Corrections.

In this work, we present a thorough assessment of the performance of some representative double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL) as well as their parent hybrid and GGA counterparts, in combination with the most modern version of the nonlocal (NL) van der Waals correction to describe very large weakly interacting molecular systems dominated by noncovalent interactions. Pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 10 8  شماره 

صفحات  -

تاریخ انتشار 2014