Modeling the Distribution of Plant Species Using the Autologistic Regression Model Modeling the Distribution of Plant Species Using the Autologistic Regression Model

نویسندگان

  • Hulin Wu
  • Fred W. Hu
چکیده

He obtained his Ph.D. from Stanford University in 1982 and since then has done research in various areas including geometrical probability, multivariate probability inequalities and survival analysis. This work is part of an ongoing project devoted to the modeling the relationship between species distribution and climate variables. Boulder for providing us with species and climate data. Abstract For modeling the distribution of plant species in terms of climate covariates, we consider an autologistic regression model for spatial binary data on a regularly spaced lattice. This model generalizes Besag's (1974) autologistic model by including covariates in the model. Three estimation methods, the coding method, maximum pseudolikelihood method and Markov chain Monte Carlo method are studied and compared via simulation and real data examples. As examples, we use the proposed methodology to model the distributions of two plant species in the state of Florida.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Different Modeling Techniques for Predicting Presence-absence of Some Dominant Plant Species in Mountain Rangelands, Mazandaran Province

In applied studies, the investigation of the relationship between a plant species and environmental variables is essential to manage ecological problems and rangeland ecosystems. This research was conducted in summer 2016. The aim of this study was to compare the predictive power of a number of Species Distribution Models (SDMs) and to evaluate the importance of a range of environmental variabl...

متن کامل

Prediction of Plant Species Boibiversity using Generalized Linear Model (GLM) and Boosted Regression Tree (BRT) in Eastern Rangelands of Mazandaran

Abstract Background and objectives: Prediction of species richness and diversity patterns are used to develop conservation strategies for biodiversity under regional and global environmental changes. Since modeling the distribution of plant species can provide useful and important information about identifying and introducing potential habitats of plant species, and also few studies have been ...

متن کامل

Prediction of potential habitat distribution of Artemisia sieberi Besser using data-driven methods in Poshtkouh rangelands of Yazd province

The present study aimed to model potential habitat distribution of A. sieberi, and its ecological requirements using generalized additive model (GAM) and classification and regression tree (CART) in in the Poshtkouh rangelands of Yazd province. For this purpose, pure habitats of the species was delineated and the species presence data was recorded by the systematic-randomize sampling method. Us...

متن کامل

Predicting the Potential Habitat Distribution of Crataegus Pontica C. Koch, Using a Combined Modeling Approach in Lorestan Province

Habitat degradation is one the important reasons of plant species extinction. Modeling techniques are widely used for identifying the potential habitats of different plant species. Thus, the purpose of current study was to determine potential habitats of Zalzalak in Lorestan Province. Species presence data and 23 environmental variables were collected in Lorestan Province. Correlation analysis ...

متن کامل

Auto-multicategorical regression model for the distribution of vegetation

Modeling the contagious distribution of species has long been a challenging issue in ecology. Autologistic regression modeling has been a primary approach used to describe the spatially correlated distribution of single species on landscapes. Here we introduce a generalized auto multicategorical regression method to model the simultaneous distribution of multiple species. The auto multicategori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997