Random and Universal Metric Spaces

نویسنده

  • A. M. VERSHIK
چکیده

We introduce a model of the set of all Polish (=separable complete metric) spaces: the cone R of distance matrices, and consider geometric and probabilistic problems connected with this object. The notion of the universal distance matrix is defined and we proved that the set of such matrices is everywhere dense Gδ set in weak topology in the cone R. Universality of distance matrix is the necessary and sufficient condition on the distance matrix of the countable everywhere dense set of so called universal Urysohn space which he had defined in 1924 in his last paper. This means that Urysohn space is generic in the set of all Polish spaces. Then we consider metric spaces with measures (metric triples) and define a complete invariant: its matrix distribution. We give an intrinsic characterization of the set of matrix distributions, and using the ergodic theorem, give a new proof of Gromov’s “reconstruction theorem’. A natural construction of a wide class of measures on the cone R is given and for these we show that with probability one a random Polish space is again the Urysohn space. There is a close connection between these questions, metric classification of measurable functions of several arguments, and classification of the actions of the infinite symmetric group ([4, 8]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random metric spaces and universality

We define the notion of a random metric space and prove that with probability one such a space is isometric to the Urysohn universal metric space. The main technique is the study of universal and random distance matrices; we relate the properties of metric (in particular, universal) spaces to the properties of distance matrices. We give examples of other categories in which the randomness and u...

متن کامل

Random coincidence point results for weakly increasing functions in partially ordered metric spaces

The aim of this paper is to establish random coincidence point results for weakly increasing random operators in the setting of ordered metric spaces by using generalized altering distance functions. Our results present random versions and extensions of some well-known results in the current literature.

متن کامل

Random Metric Spaces and the Universal Urysohn Space.2

We introduce a model of the set of all Polish (=separable complete metric) spaces which is the cone R of distance matrices, and consider the geometrical and probabilistic problems connected with this object. We prove that the generic Polish space in the sense of this model is the so called universal Urysohn space which was defined by P.S.Urysohn in the 1920-th. Then we consider the metric space...

متن کامل

A theorem of Hrushovski–Solecki–Vershik applied to uniform and coarse embeddings of the Urysohn metric space

A theorem proved by Hrushovski for graphs and extended by Solecki and Vershik (independently from each other) to metric spaces leads to a stronger version of ultrahomogeneity of the infinite random graph R, the universal Urysohn metric space U, and other related objects. We propose a new proof of the result and show how it can be used to average out uniform and coarse embeddings of U (and its v...

متن کامل

$C$-class and $F(psi,varphi)$-contractions on $M$-metric spaces

Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational semantics of data flow networks. In 2014 Asadi and {it et al.} [New Extension of $p$-Metric Spaces with Some fixed point Results on $M$-metric paces, J. Ineq. Appl. 2014 (2014): 18] extend the Partial metric spaces to $M$-metric spaces. In this work, we introduce the class of $F(psi,varphi)$-contrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002