Increasing the clearance of protein-bound solutes by addition of a sorbent to the dialysate.
نویسندگان
چکیده
The capacity of sorbent systems to increase solute clearances above the levels that are provided by hemodialysis has not been well defined. This study assessed the extent to which solute clearances can be increased by addition of a sorbent to the dialysate. Attention was focused on the clearance of protein-bound solutes, which are cleared poorly by conventional hemodialysis. A reservoir that contained test solutes and artificial plasma was dialyzed first with the plasma flow set at 46 +/- 3 ml/min and the dialysate flow (Q(d)) set at 42 +/- 3 ml/min using a hollow fiber kidney with mass transfer area coefficients greater than Q(d) for each of the solutes. Under these conditions, the clearance of urea (Cl(urea)) was 34 +/- 1 ml/min, whereas the clearances of the protein-bound solutes indican (Cl(ind)), p-cresol sulfate (Cl(pcs)), and p-cresol (Cl(pc)) averaged only 5 +/- 1, 4 +/- 1, and 14 +/- 1 ml/min, respectively The effect of addition of activated charcoal to the dialysate then was compared with the effect of increasing Q(d) without addition of any sorbent. Addition of charcoal increased Cl(ind), Cl(pcs), and Cl(pc) to 12 +/- 1, 9 +/- 2, and 35 +/- 4 ml/min without changing Cl(urea). Increasing Q(d) without the addition of sorbent had a similar effect on the clearance of the protein-bound solutes. Mathematical modeling predicted these changes and showed that the maximal effect of addition of a sorbent to the dialysate is equivalent to that of an unlimited increase in Q(d). These results suggest that as an adjunct to conventional hemodialysis, addition of sorbents to the dialysate could increase the clearance of protein-bound solutes without greatly altering the clearance of unbound solutes.
منابع مشابه
Increasing dialysate flow and dialyzer mass transfer area coefficient to increase the clearance of protein-bound solutes.
Clinical hemodialysis systems achieve high single pass extraction of small solutes that are not bound to plasma proteins. But they clear protein-bound solutes much less effectively. This study examines the extent to which clearance of a protein-bound test solute is improved by increasing the dialyzer mass transfer area coefficient (KoA) and the dialysate flow rate (Qd). A reservoir containing t...
متن کاملThe clearance of protein-bound solutes by hemofiltration and hemodiafiltration.
BACKGROUND Hemofiltration in the form of continuous venovenous hemofiltration (CVVH) is increasingly used to treat acute renal failure. Compared to hemodialysis, hemofiltration provides high clearances for large solutes but its effect on protein-bound solutes has been largely ignored. METHODS Standard clinical systems were used to remove test solutes from a reservoir containing artificial pla...
متن کاملA Proposed Peritoneal-Based Wearable Artificial Kidney.
Ideally, an artificial kidney should simulate the normal kidney in providing continuous metabolic control, removal of toxins, and unrestricted patient freedom. Of the dialysis procedures available, continuous ambulatory peritoneal dialysis (CAPD) comes the closest to this ideal but provides inadequate dialysis and fails to remove protein-bound toxins. A continuous, wearable, peritoneal-based ar...
متن کاملOptimal Wavelength Selection in Ultraviolet Spectroscopy for the Estimation of Toxin Reduction Ratio during Hemodialysis
Introduction The concentration of substances, including urea, creatinine, and uric acid, can be used as an index to measure toxic uremic solutes in the blood during dialysis and interdialytic intervals. The on-line monitoring of toxin concentration allows for the clearance measurement of some low-molecular-weight solutes at any time during hemodialysis.The aim of this study was to determine the...
متن کاملEffect of the super-flux cellulose triacetate dialyser membrane on the removal of non-protein-bound and protein-bound uraemic solutes.
BACKGROUND Uraemic solutes accumulate in haemodialysis (HD) patients and interfere with physiological functions. Low-flux (LF) HD does not efficiently remove all uraemic compounds. We investigated whether large pore super-flux (SF) cellulose triacetate membranes (CTA) result in a better removal of uraemic solutes. METHODS Eleven patients were dialysed consecutively with LF-CTA and SF-CTA duri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 18 3 شماره
صفحات -
تاریخ انتشار 2007